期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
随机权神经网络增量构造学习方法研究进展
被引量:
2
1
作者
代伟
南静
《控制与决策》
EI
CSCD
北大核心
2023年第8期2231-2242,共12页
随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于...
随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于实现和低人工干预等.RWNN的隐含层和输入层之间的参数是在一个固定区间内随机生成,而隐含层和输出层之间的输出权值则通过解析法进行求解.增量构造方法从一个小的初始网络开始,逐渐添加新的隐含层节点以提升模型品质,直到满足预期性能目标.基于此,重点从基础理论、增量构造学习方法和未来开放研究方向等方面切入,全面综述增量RWNN的研究进展.首先介绍RWNN的基本结构、理论和分析;进一步重点介绍RWNN在增量构造学习方法上的各种改进及应用;最后指出RWNN增量构造学习未来开放的研究方向.
展开更多
关键词
随机权神经网络
增量构造学习方法
前馈神经网络
随机
方法
数据分析
无限逼近性
原文传递
题名
随机权神经网络增量构造学习方法研究进展
被引量:
2
1
作者
代伟
南静
机构
中国矿业大学人工智能研究院
中国矿业大学信息与控制工程学院
出处
《控制与决策》
EI
CSCD
北大核心
2023年第8期2231-2242,共12页
基金
国家自然科学基金面上项目(61973306)
江苏省自然科学基金优秀青年基金项目(BK20200086).
文摘
随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于实现和低人工干预等.RWNN的隐含层和输入层之间的参数是在一个固定区间内随机生成,而隐含层和输出层之间的输出权值则通过解析法进行求解.增量构造方法从一个小的初始网络开始,逐渐添加新的隐含层节点以提升模型品质,直到满足预期性能目标.基于此,重点从基础理论、增量构造学习方法和未来开放研究方向等方面切入,全面综述增量RWNN的研究进展.首先介绍RWNN的基本结构、理论和分析;进一步重点介绍RWNN在增量构造学习方法上的各种改进及应用;最后指出RWNN增量构造学习未来开放的研究方向.
关键词
随机权神经网络
增量构造学习方法
前馈神经网络
随机
方法
数据分析
无限逼近性
Keywords
random weight neural network
incremental construction learning method
feedforward neural network
random methods
data analysis
universal approximation property
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
随机权神经网络增量构造学习方法研究进展
代伟
南静
《控制与决策》
EI
CSCD
北大核心
2023
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部