期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
随机权神经网络增量构造学习方法研究进展 被引量:2
1
作者 代伟 南静 《控制与决策》 EI CSCD 北大核心 2023年第8期2231-2242,共12页
随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于... 随机权神经网络(random weight neural network,RWNN)在解决数据定性和定量分析方面具有强大的潜力,其最显著的特征是隐含层参数随机生成.这一特征使得RWNN相比于基于梯度下降优化微调节点参数的神经网络具有诸多优势,如结构简单、易于实现和低人工干预等.RWNN的隐含层和输入层之间的参数是在一个固定区间内随机生成,而隐含层和输出层之间的输出权值则通过解析法进行求解.增量构造方法从一个小的初始网络开始,逐渐添加新的隐含层节点以提升模型品质,直到满足预期性能目标.基于此,重点从基础理论、增量构造学习方法和未来开放研究方向等方面切入,全面综述增量RWNN的研究进展.首先介绍RWNN的基本结构、理论和分析;进一步重点介绍RWNN在增量构造学习方法上的各种改进及应用;最后指出RWNN增量构造学习未来开放的研究方向. 展开更多
关键词 随机权神经网络 增量构造学习方法 前馈神经网络 随机方法 数据分析 无限逼近性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部