为解决类别属性数据流异常点检测问题,针对事务数据流环境,提出了基于属性关联及匹配差异度的数据流异常检测模型AAMDD(attribute associations and match difference degree).AAMDD模型离线构建一个关联规则库,并对其进行增量式更新.同...为解决类别属性数据流异常点检测问题,针对事务数据流环境,提出了基于属性关联及匹配差异度的数据流异常检测模型AAMDD(attribute associations and match difference degree).AAMDD模型离线构建一个关联规则库,并对其进行增量式更新.同时,利用时间敏感型滑动窗口(time-sensitive sliding windows,TimeSW)维护数据流数据,每经过一个时间跨度,就将当前窗口中每条数据包含的项集与关联规则库进行匹配,计算匹配差异度,根据匹配差异度的不同在线检测异常点.此外,给出了与AAMDD模型相对应的算法AAMDD-algorithm.实验结果表明,AAMDD-algorithm比FODFP-Stream算法的效率和检测精确度分别平均提高了37.43%和5.51%,并且AAMDD-algorithm的查全率保持在77%以上,可用于事务型数据流异常检测.展开更多
In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones...In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective.展开更多
In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (...In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (LSAP) based on the TE of noisy speech as a feature parameter for voice activity detection (VAD) in each frequency subband, rather than conventional LSAP. Results show that the TE operator can enhance the abiTity to discriminate speech and noise and further suppress noise components. Therefore, TE-based LSAP provides a better representation of LSAP, resulting in improved VAD for estimating noise power in a speech enhancement algorithm. In addition, the presented method utilizes TE-based global SAP (GSAP) derived in each frame as the weighting parameter for modifying the adopted TE operator and improving its performance. The proposed algorithm was evaluated by objective and subjective quality tests under various environments, and was shown to produce better results than the conventional method.展开更多
Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making...Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making it difficult to identify surface defects. In this study,a method for improving the quality of underwater images is proposed.By analyzing the degradation characteristics of underwater detection image,the image enhancement technology is used to improve the color richness of the image,and then the improved dark channel prior(DCP)algorithm is used to restore it. By modifying the estimation formula of transmittance and background light,the correction of insufficient brightness in DCP restored image is realized. The proposed method is compared with other state-of-the-art methods. The results show that the proposed method can achieve higher scores and improve the image quality by correcting the color and restoring local details,thus effectively enhancing the reliability of visual inspection of NPPs.展开更多
文摘为解决类别属性数据流异常点检测问题,针对事务数据流环境,提出了基于属性关联及匹配差异度的数据流异常检测模型AAMDD(attribute associations and match difference degree).AAMDD模型离线构建一个关联规则库,并对其进行增量式更新.同时,利用时间敏感型滑动窗口(time-sensitive sliding windows,TimeSW)维护数据流数据,每经过一个时间跨度,就将当前窗口中每条数据包含的项集与关联规则库进行匹配,计算匹配差异度,根据匹配差异度的不同在线检测异常点.此外,给出了与AAMDD模型相对应的算法AAMDD-algorithm.实验结果表明,AAMDD-algorithm比FODFP-Stream算法的效率和检测精确度分别平均提高了37.43%和5.51%,并且AAMDD-algorithm的查全率保持在77%以上,可用于事务型数据流异常检测.
基金The National Basic Research Program of China(973 Program)(No.2010CB328104,2009CB320501)the National Natural Science Foundation of China(No.61272531,61070158,61003257,61060161,61003311,41201486)+4 种基金the National Key Technology R&D Program during the11th Five-Year Plan Period(No.2010BAI88B03)Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092130002)the National Science and Technology Major Project(No.2009ZX03004-004-04)the Foundation of the Key Laboratory of Netw ork and Information Security of Jiangsu Province(No.BM2003201)the Key Laboratory of Computer Netw ork and Information Integration of the Ministry of Education of China(No.93K-9)
文摘In order to effectively detect malicious phishing behaviors, a phishing detection method based on the uniform resource locator (URL) features is proposed. First, the method compares the phishing URLs with legal ones to extract the features of phishing URLs. Then a machine learning algorithm is applied to obtain the URL classification model from the sample data set training. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. The experiments verify that the combination of the URL features extracted in this paper and the support vector machine (SVM) classification algorithm can achieve a high phishing detection accuracy, and the incremental learning algorithm is also effective.
基金Project supported by Inha University Research GrantProject(10031764) supported by the Strategic Technology Development Program of Ministry of Knowledge Economy, Korea
文摘In this work, a novel voice activity detection (VAD) algorithm that uses speech absence probability (SAP) based on Teager energy (TE) was proposed for speech enhancement. The proposed method employs local SAP (LSAP) based on the TE of noisy speech as a feature parameter for voice activity detection (VAD) in each frequency subband, rather than conventional LSAP. Results show that the TE operator can enhance the abiTity to discriminate speech and noise and further suppress noise components. Therefore, TE-based LSAP provides a better representation of LSAP, resulting in improved VAD for estimating noise power in a speech enhancement algorithm. In addition, the presented method utilizes TE-based global SAP (GSAP) derived in each frame as the weighting parameter for modifying the adopted TE operator and improving its performance. The proposed algorithm was evaluated by objective and subjective quality tests under various environments, and was shown to produce better results than the conventional method.
基金supported by the National Natural Science Foundations of China (Nos. 51674031,51874022)。
文摘Visual inspection of the key components of nuclear power plants(NPPs)is important for NPP operation and maintenance. However,the underwater environment and existing radiation will lead to image degradation,thus making it difficult to identify surface defects. In this study,a method for improving the quality of underwater images is proposed.By analyzing the degradation characteristics of underwater detection image,the image enhancement technology is used to improve the color richness of the image,and then the improved dark channel prior(DCP)algorithm is used to restore it. By modifying the estimation formula of transmittance and background light,the correction of insufficient brightness in DCP restored image is realized. The proposed method is compared with other state-of-the-art methods. The results show that the proposed method can achieve higher scores and improve the image quality by correcting the color and restoring local details,thus effectively enhancing the reliability of visual inspection of NPPs.