期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于增量流形学习的语音情感特征降维方法 被引量:5
1
作者 王海鹤 陆捷荣 +1 位作者 詹永照 毛启容 《计算机工程》 CAS CSCD 北大核心 2011年第12期144-146,共3页
非线性流形学习可以准确反映现实非线性数据本质并进行较好的降维,但在语音情感识别过程中难以有效处理不断增加的语音数据集,也不能充分利用训练过程中的情感特征信息。针对上述情况,提出一种基于增量流形学习的语音情感特征降维方法... 非线性流形学习可以准确反映现实非线性数据本质并进行较好的降维,但在语音情感识别过程中难以有效处理不断增加的语音数据集,也不能充分利用训练过程中的情感特征信息。针对上述情况,提出一种基于增量流形学习的语音情感特征降维方法。该方法利用等距映射将训练样本特征维数降至目标维数后,通过增量流形学习的方法分批求得测试样本的低维特征。实验结果表明,相比同类方法,该方法具有较低的运算复杂度和较高的识别率。 展开更多
关键词 语音情感识别 增量流形学习 特征降维 等距映射 支持向量机
下载PDF
一种基于迭代分解的增量流形学习算法
2
作者 谈超 吉根林 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期14-20,共7页
流形学习可以用于发现大型高维数据集的内在结构,并给出理解该数据集的潜在方式,已被视为一种有效的非线性降维方法 .近年来,新数据点不断地从数据流中产生,将改变已有数据点及其邻域点的坐标,传统流形学习算法不能有效地用于寻找高维... 流形学习可以用于发现大型高维数据集的内在结构,并给出理解该数据集的潜在方式,已被视为一种有效的非线性降维方法 .近年来,新数据点不断地从数据流中产生,将改变已有数据点及其邻域点的坐标,传统流形学习算法不能有效地用于寻找高维数据流的内在信息.为了解决该问题,本文提出了一种基于迭代分解的增量流形学习算法IMLID(Incremental Manifold Learning Algorithm Based on Iterative Decomposition),可以检测到数据流形中的逐步变化,校准逐渐变化中的流形,可提高在取样于真实世界的特征集上分类效果的精确率,利用真实数据集进行实验验证,结果表明本文提出的算法是有效的,与其他相关算法相比,其性能具有优势,在模式识别、生物信息等领域具有应用价值. 展开更多
关键词 流形学习 迭代分解 增量流形学习
下载PDF
增量与演化流形学习综述 被引量:2
3
作者 谈超 关佶红 周水庚 《智能系统学报》 北大核心 2012年第5期377-388,共12页
流形学习的目标是发现观测数据嵌入在高维数据空间中的低维光滑流形.近年来,在线或增量地发现内在低维流形结构成为流形学习的研究热点.从增量学习和演化学习2个方面入手,对该领域已有研究进展进行综述.增量流形学习较之传统的批量流形... 流形学习的目标是发现观测数据嵌入在高维数据空间中的低维光滑流形.近年来,在线或增量地发现内在低维流形结构成为流形学习的研究热点.从增量学习和演化学习2个方面入手,对该领域已有研究进展进行综述.增量流形学习较之传统的批量流形学习方法具有动态增量的能力,而演化流形学习能够在线地发现海量动态数据的内在规律,有利于进行维数约简和数据分析.文中对主要的增量与演化流形学习算法的基本原理、特点进行了阐述,分析了各自的优点与不足,指出了该领域的开放问题,并对进一步的研究方向进行了展望. 展开更多
关键词 流形学习 增量流形学习 演化流形学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部