金融市场对于社会经济的发展非常重要,因此金融时间序列预测(Financial time series prediction,FTSP)一直是人们研究的焦点。至今,许多基于统计分析和软计算的方法被提出以解决FTSP问题,其中大多数方法将金融时间序列(Financial time s...金融市场对于社会经济的发展非常重要,因此金融时间序列预测(Financial time series prediction,FTSP)一直是人们研究的焦点。至今,许多基于统计分析和软计算的方法被提出以解决FTSP问题,其中大多数方法将金融时间序列(Financial time series,FTS)视为或转化为平稳序列进行处理。但是,由于绝大部分FTS是非平稳的,因此这些方法通常存在伪回归或预测性能不佳等问题。本文提出了一种自适应增量集成学习(Self-adaptive incremental ensemble learning,SIEL)算法,用于解决非平稳金融时间序列预测(Non-stationary FTSP,NS-FTSP)问题。SIEL算法的主要思想是为每个非平稳金融时间序列(Non-stationary FTS,NS-FTS)子集增量地训练一个基模型,然后使用自适应加权规则将各基模型组合起来。SIEL算法的重点在于数据权重和基模型权重的更新:数据权重基于当前集成模型在最新数据集上的性能进行更新,其目的不是为了数据采样,而是为了权衡误差;基模型权重基于其所处环境进行自适应更新,且基模型在越新环境下的性能应具有越高的权重。此外,针对NS-FTS的特征,SIEL算法提出了一种能协调新旧知识以及应对环境重演的策略。最后,给出了SIEL算法在3个NS-FTS数据集上的实验结果,并将其与已有算法进行了对比。实验结果表明,SIEL算法能很好地解决NS-FTSP问题。展开更多
网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on d...网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on divergence detection,ECDD),采用双层窗口机制,从信息熵的角度出发,根据流量特征分布的JS散度,记为JSD(Jensen-Shannon divergence)来度量滑动窗口内数据分布的差异,从而检测概念漂移.借鉴增量集成学习的思想,检测到漂移时对于新样本重新训练出新的分类器,之后通过分类器权值排序,保留性能较高的分类器,加权集成分类结果对样本进行分类.抓取常见的网络应用流量,根据应用特征分布的不同构建概念漂移数据集,将该方法与常见的概念漂移检测方法进行实验对比,实验结果表明:该方法可以有效地检测概念漂移和更新分类器,表现出较好的分类性能.展开更多
文摘金融市场对于社会经济的发展非常重要,因此金融时间序列预测(Financial time series prediction,FTSP)一直是人们研究的焦点。至今,许多基于统计分析和软计算的方法被提出以解决FTSP问题,其中大多数方法将金融时间序列(Financial time series,FTS)视为或转化为平稳序列进行处理。但是,由于绝大部分FTS是非平稳的,因此这些方法通常存在伪回归或预测性能不佳等问题。本文提出了一种自适应增量集成学习(Self-adaptive incremental ensemble learning,SIEL)算法,用于解决非平稳金融时间序列预测(Non-stationary FTSP,NS-FTSP)问题。SIEL算法的主要思想是为每个非平稳金融时间序列(Non-stationary FTS,NS-FTS)子集增量地训练一个基模型,然后使用自适应加权规则将各基模型组合起来。SIEL算法的重点在于数据权重和基模型权重的更新:数据权重基于当前集成模型在最新数据集上的性能进行更新,其目的不是为了数据采样,而是为了权衡误差;基模型权重基于其所处环境进行自适应更新,且基模型在越新环境下的性能应具有越高的权重。此外,针对NS-FTS的特征,SIEL算法提出了一种能协调新旧知识以及应对环境重演的策略。最后,给出了SIEL算法在3个NS-FTS数据集上的实验结果,并将其与已有算法进行了对比。实验结果表明,SIEL算法能很好地解决NS-FTSP问题。
文摘网络流量特征分布的动态变化产生概念漂移问题,造成基于机器学习的网络流量分类模型精度下降.定期更新分类模型耗时且无法保证分类模型的泛化能力.基于此,提出一种基于散度的网络流概念漂移分类方法(ensemble classification based on divergence detection,ECDD),采用双层窗口机制,从信息熵的角度出发,根据流量特征分布的JS散度,记为JSD(Jensen-Shannon divergence)来度量滑动窗口内数据分布的差异,从而检测概念漂移.借鉴增量集成学习的思想,检测到漂移时对于新样本重新训练出新的分类器,之后通过分类器权值排序,保留性能较高的分类器,加权集成分类结果对样本进行分类.抓取常见的网络应用流量,根据应用特征分布的不同构建概念漂移数据集,将该方法与常见的概念漂移检测方法进行实验对比,实验结果表明:该方法可以有效地检测概念漂移和更新分类器,表现出较好的分类性能.