期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
LF处理过程中钢水增铝问题的研究 被引量:3
1
作者 杜松林 高振波 +2 位作者 李颂 梁海庆 包燕平 《钢铁》 CAS CSCD 北大核心 2007年第2期18-20,38,共4页
硅镇静钢及少量铝脱氧的钢在LF处理过程中会发生钢水中铝含量增加以及夹杂物组成改变的现象。通过理论计算和工业生产实践研究了不同的渣系、钢水成分、处理时间等对LF精炼过程增铝的影响,不同精炼渣系下钢中夹杂的组成,结果表明采用CaO... 硅镇静钢及少量铝脱氧的钢在LF处理过程中会发生钢水中铝含量增加以及夹杂物组成改变的现象。通过理论计算和工业生产实践研究了不同的渣系、钢水成分、处理时间等对LF精炼过程增铝的影响,不同精炼渣系下钢中夹杂的组成,结果表明采用CaO-SiO2渣系LF处理过程几乎不发生增铝现象,而采用CaO-Al2O3渣系随着处理时间的延长以及钢种成分的区别,钢中铝有不同程度的增加,生产实践结果与理论计算趋势基本一致。采用CaO-Al2O3渣系精炼与CaO-SiO2渣系相比,钢中Al2O3夹杂数增加4倍,氧化物复合夹杂中w(Al2O3)提高113%,w(CaO)提高24.5%。在帘线钢72A以及HRB400、SS400钢的生产实践中加以应用,使得LF处理后72A的w(Al)小于0.000 5%,HRB400、SS400的小于0.003%,避免了有害夹杂物的形成,消除了在小方坯连铸过程中的水口堵塞现象。 展开更多
关键词 LF精炼 增铝 精炼渣系
下载PDF
硬线钢LF增铝理论计算及水口结瘤分析 被引量:4
2
作者 张祥艳 陈兴伟 +3 位作者 张春燕 陈春生 张晓香 李毅平 《炼钢》 CAS 北大核心 2012年第5期56-60,共5页
以热力学计算为基础,探讨了唐山钢铁集团有限责任公司硬线钢LF精炼过程中,钢水中Si、C与精炼渣中的Al2O3反应导致钢水增铝的可能性;通过理论计算分析LF精炼工艺参数对钢水平衡含铝量的影响,确定了最佳的LF精炼工艺。并结合文献分析了唐... 以热力学计算为基础,探讨了唐山钢铁集团有限责任公司硬线钢LF精炼过程中,钢水中Si、C与精炼渣中的Al2O3反应导致钢水增铝的可能性;通过理论计算分析LF精炼工艺参数对钢水平衡含铝量的影响,确定了最佳的LF精炼工艺。并结合文献分析了唐钢硬线钢小方坯连铸中间包水口结瘤原因。通过理论计算得出:目前硬线钢LF精炼工艺,满足钢水可浇性的要求;高牌号硬线钢LF精炼工艺采用精炼渣碱度R≤1.0,精炼渣中的w(Al2O3)≤5%,精炼温度t<1 600℃,同时严格控制原材料的含铝量,LF精炼过程中钢水平衡w(AlS)<3.5×10-6。 展开更多
关键词 LF精炼 增铝 水口结瘤 硬线钢
原文传递
精炼钢水增酸熔铝操作
3
作者 李军辉 《浙江冶金》 2010年第2期49-50,共2页
通过对精炼过程的优化,针对提高钢水酸熔铝,总结出一套行之有效的操作方法,经推广使用,对提高钢水质量起到了一定的作用。
关键词 转炉炼钢 精炼 酸熔 操作
下载PDF
Role of inclination angle on columnar-to-equiaxed transition in the eutectic Al-5Mg-2Si alloy fabricated by laser powder bed fusion
4
作者 YANG Fei-peng WEN Tao +4 位作者 ZHANG Lei WANG Jian-ying HUANG Shi-long JI Shou-xun YANG Hai-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2150-2166,共17页
In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures... In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs. 展开更多
关键词 additive manufacturing aluminium alloys columnar-to-equiaxed transition ANISOTROPY mechanical property
下载PDF
Characteristic and optimization of ferrite-rich sulfoaluminate-based composite cement suitable for cold region tunnels
5
作者 PENG You LI Li +5 位作者 TAN Xian-jun QIU Xin ZHENG Pei-chao XIE Jun CHEN Wei-zhong REZIWANGULI Sha-ta-er 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2794-2809,共16页
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia... To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels. 展开更多
关键词 ferrite-rich sulfoaluminate cement cold zone early strength synergist mechanical property MICRO-STRUCTURE pumped storage power
下载PDF
含钛低碳钢LF精炼渣的优化 被引量:3
6
作者 李文英 吴志敏 《特殊钢》 北大核心 2013年第5期38-40,共3页
含钛低碳钢(/%:0.05~0.10C、0.70—0.95Si、1.45~1.65Mn、≤0.025P、≤0.025S、0.10—0.20Ti)的生产流程为高炉铁水.35tLD.LF.150mm×150mm连铸工艺。用少量铝脱氧的含钛低碳钢,由于LF精炼渣(/%:55~59CAO... 含钛低碳钢(/%:0.05~0.10C、0.70—0.95Si、1.45~1.65Mn、≤0.025P、≤0.025S、0.10—0.20Ti)的生产流程为高炉铁水.35tLD.LF.150mm×150mm连铸工艺。用少量铝脱氧的含钛低碳钢,由于LF精炼渣(/%:55~59CAO、21.9—26.5Si02、9.4—14.3A1:0,)中A1203含量较高,使LF精炼过程中钢水铝含量增加和20t中间包水口结瘤,影响连铸顺行。在热力学计算的基础上,优化了冶炼工艺,转炉出钢不加铝锰铁,使用低铝硅铁代替普通硅铁,精炼渣不加高铝矾土,优化精炼渣成分(/%:56.1~65.6CaO、19.3~27.2SiO:、5.1~9.1A1:03),钢水中A1含量由0.007%~0.018%降至0.001%-0.009%,有效减少中间包水口结瘤的发生。连浇炉数由原来的3~6炉提高到9—16炉。 展开更多
关键词 含钛低碳钢LF精炼渣钢水增铝 水口结瘤
下载PDF
Microstructures and mechanical properties of extruded 2024 aluminum alloy reinforced by FeNiCrCoAl_3 particles 被引量:8
7
作者 王志伟 原燕波 +2 位作者 郑瑞晓 Kei AMEYAMA 马朝利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2366-2373,共8页
Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The mic... Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases. 展开更多
关键词 aluminium alloys FeNiCrCoAl3 reinforced particles high entropy alloy ball milling hot extrusion nano-precipitates
下载PDF
Numerical simulation of ductile fracture behavior for aluminum alloy sheet under cyclic plastic deformation 被引量:3
8
作者 胡星 赵亦希 +1 位作者 李淑慧 林忠钦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1595-1601,共7页
A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain pat... A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism. 展开更多
关键词 aluminum alloy ductile damage incremental forming cyclic plastic deformation
下载PDF
Study on mechanical properties of composite materials by in-situ tensile test
9
作者 黄海波 李凡 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期49-52,共4页
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p... The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface. 展开更多
关键词 Cracks Fiber reinforced materials Interfaces (materials) Mechanical properties MICROSTRUCTURE Scanning electron microscopy Silicon carbide Tensile testing
下载PDF
Distribution and engulfment behavior of TiB_2 particles or clusters in wedge-shaped copper casting ingot 被引量:1
10
作者 孙靖 张晓波 +3 位作者 蔡庆 张亦杰 马乃恒 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期54-60,共7页
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The... Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions. 展开更多
关键词 discontinuously reinforced aluminum matrix composites Ti B2 wedge-shaped copper mold casting particle distribution particle engulfment
下载PDF
Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate 被引量:4
11
作者 WU Xin-tong ZHAN Li-hua +3 位作者 HUANG Ming-hui ZHAO Xing WANG Xun ZHAO Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期657-668,共12页
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ... Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components. 展开更多
关键词 carbon fiber reinforced aluminum laminate galvanic corrosion ELECTROCHEMISTRY interlaminar shear strength aluminum alloy
下载PDF
Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al-Cu alloy 被引量:4
12
作者 Ming-ye DONG Yue ZHAO +2 位作者 Quan LI Fu-de WANG Ai-ping WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第3期750-764,共15页
Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical propert... Wall structures were made by cold metal transfer-based wire and arc additive manufacturing using two kinds of ER2319 welding wires with and without Cd elements. T6 heat treatment was used to improve mechanical properties of these wall structures. Due to the higher vacancy binding energy of Cd, Cd-vacancy clusters are formed in the aging process and provide a large number of nucleation locations for θ′ phases. The higher diffusion coefficient of the Cd-vacancy cluster and the lower interfacial energy of θ′ phase lead to the formation of dense θ′ phases in the heat-treated α(Al). According to the strengthening model, after adding Cd in ER2319 welding wires, the yield strength increases by 43 MPa in the building direction of the heat-treated wall structures. 展开更多
关键词 CD welding wire wire and arc additive manufacturing Al-Cu alloy
下载PDF
Effect of thermal-cooling cycle treatment on thermal expansion behavior of particulate reinforced aluminum matrix composites 被引量:5
13
作者 陈国钦 修子扬 +2 位作者 杨文澍 姜龙涛 武高辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2143-2147,共5页
Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology. Microstructures and effect o... Two micron SiC particles with angular and spherical shape and the sub-micron Al2O3 particles with spherical shape were introduced to reinforce 6061 aluminium by squeeze casting technology. Microstructures and effect of thermal-cooling cycle treatment (TCCT) on the thermal expansion behaviors of three composites were investigated. The results show that the composites are free of porosity and SiC/Al2O3 particles are distributed uniformly. Inflections at about 300℃ are observed in coefficient of thermal expansion (CTE) versus temperature curves of two SiCp/Al composites, and this characteristic is not affected by TCCT. The TCCT has significant effect on thermal expansion behavior of SiCp/Al composites and CTE of them after 3 cycles is lower than that of 1 or 5 cycles. However, no inflection is observed in Al2O3p/Al composite, while TCCT has effect on CTE of Al2O3p/Al composite. These results should be due to different relaxation behavior of internal stress in three composites. 展开更多
关键词 SiC aluminum matrix composite thermal expansion behavior thermal-cooling cycle treatment
下载PDF
Comparison of microstructure and wear resistance of A356-SiC_p composites processed via compocasting and vibrating cooling slope 被引量:5
14
作者 H.KHOSRAVI F.AKHLAGHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2490-2498,共9页
The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compare... The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process. 展开更多
关键词 Al-A356/SiCp composite compocasting vibrating cooling slope MICROSTRUCTURE particle distribution POROSITY hardness wear resistance
下载PDF
Flow stress behavior and processing map of extruded 7075Al/SiC particle reinforced composite prepared by spray deposition during hot compression 被引量:2
15
作者 吴红丹 张辉 +1 位作者 陈爽 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期692-698,共7页
Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and st... Hot compression tests of the extruded 7075Al/15%SiC (volume fraction) particle reinforced composite prepared by spray deposition were performed on Gleeble?1500 system in the temperature range of 300?450 °C and strain rate range of 0.001?1 s?1. The results indicate that the true stress?true strain curve almost exhibits rapid flow softening phenomenon without an obvious work hardening, and the stress decreases with increasing temperature and decreasing strain rate. Moreover, the stress levels are higher at temperature below 400 °C but lower at 450 °C compared with the spray deposited 7075Al alloy. Superplastic deformation characteristics are found at temperature of 450 °C and strain rate range of 0.001?0.1 s?1 with corresponding strain rate sensitivity of 0.72. The optimum parameters of hot working are determined to be temperature of 430?450 °C and strain rate of 0.001?0.05 s?1 based on processing map and optical microstructural observation. 展开更多
关键词 7075 Al SIC particle-reinforced composite hot compression deformation flow stress processing map superplastic deformation
下载PDF
Effects of reinforcement on wear resistance of aluminum matrix composites 被引量:10
16
作者 A.PRAMANIK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期348-358,共11页
The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding spe... The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear. 展开更多
关键词 metal matrix composite 6061 aluminium alloy wear resistance REINFORCEMENT
下载PDF
Microstructure,mechanical and wear properties of aluminum borate whisker reinforced aluminum matrix composites 被引量:5
17
作者 Neeraj PANDEY ICHAKRABARTY +2 位作者 Kalpana BARKANE NSMEHTA MRMAJHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1731-1742,共12页
The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventiona... The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventional powder metallurgy technique. The aluminium powder and the whisker were effectively blended by a semi-powder metallurgy method. The blended powder mixtures were cold compacted and sintered at 600 ℃. The sintered composites were characterized for microstructural features by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analysis. Porosity in the composites with variation in ABOw contents was determined. The effect of variation in content of ABOw on mechanical properties, viz. hardness, bending strength and compressive strength of the composites was evaluated. The dry sliding wear behaviour was evaluated at varying sliding distance at constant loads. Maximum flexural strength of 172 MPa and compressive strength of 324 MPa with improved hardness around HV 40.2 are obtained in composite with 10 wt.% ABOw. Further increase in ABOw content deteriorates the properties. A substantial increase in wear resistance is also observed with 10 wt.% ABOw. The excellent combination of mechanical properties of Al-10 wt.%ABOw composites is attributed to good interfacial bonds, less porosity and uniformity in the microstructure. 展开更多
关键词 aluminum matrix composite powder metallurgy aluminum borate whisker(ABOw)reinforcement flexural strength compression test dry sliding wear
下载PDF
Effects of SiC interfacial coating on mechanical properties of carbon fiber needled felt reinforced sol-derived Al2O3 composites 被引量:2
18
作者 Kuan-hong ZENG Qing-song MA Xing-yu GU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第2期463-471,共9页
3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3... 3D carbon fiber needled felt and polycarbosilane-derived SiC coating were selected as reinforcement and interfacial coating,respectively,and the sol-impregnation-drying-heating(SIDH)route was used to fabricate C/Al2O3 composites.The effects of Si C interfacial coating on the mechanical properties,oxidation resistance and thermal shock resistance of C/Al2O3 composites were investigated.It is found that the fracture toughness of C/Al2O3 composites was remarkably superior to that of monolithic Al2O3 ceramics.The introduction of SiC interfacial coating obviously improved the strengths of C/Al2O3 composites although the fracture work diminished to some extent.Owing to the tight bonding between SiC coating and carbon fiber,the C/SiC/Al2O3 composites showed much better oxidation and thermal shock resistance over C/Al2O3 composites under static air. 展开更多
关键词 ALUMINA carbon fiber reinforcement interfacial coating mechanical properties oxidation resistance thermal shock resistance
下载PDF
Tailoring microstructure and mechanical properties of aluminum matrix composites reinforced with novel Al/CuFe multi-layered core-shell particles
19
作者 Rashid ALI Fahad ALI +6 位作者 Aqib ZAHOOR Rub Nawaz SHAHID Naeem ul Haq TARIQ Zafar IQBAL Adnan Qayyum BUTT Saad ULLAH Hasan Bin AWAIS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1822-1833,共12页
Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure a... Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties. 展开更多
关键词 core-shell reinforcement aluminum matrix composites electroless plating sintering techniques spark plasma sintering interfacial reaction
下载PDF
Mechanism of improving strength and damping properties of powder-extruded Al/Zn composite after diffusion annealing 被引量:2
20
作者 Zhi-hao ZHANG Fei XIAO +1 位作者 You-wei WANG Yan-bin JIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期1928-1937,共10页
In order to develop high strength,high damping and low density Al matrix composites,the Al/Zn composite bar samples with Zn mass fraction of 10%-40%were prepared by powder extrusion.The tensile strength and damping pr... In order to develop high strength,high damping and low density Al matrix composites,the Al/Zn composite bar samples with Zn mass fraction of 10%-40%were prepared by powder extrusion.The tensile strength and damping properties of the samples are improved by controlling both the Zn/Al diffusion degree and the precipitation of the interfacial phases.The results show that the tensile strength of the samples with Zn mass fraction of 10%-30%increases with the increases of both the Zn content and annealing temperature.When the Zn mass fraction increases to 40%,the tensile strength of the sample remains basically unchanged or decreases slightly,and the plasticity decreases gradually.Alloying of Al matrix and the formation of Zn/Al interface layer are mainly responsible for improving the strength of the annealed samples.The damping properties increase with the increases of both the Zn content and annealing temperature.The Zn/Al eutectoid lamella eliminates the detrimental effects on damping properties due to both alloying of the Al matrix and reduction of pure Zn in the Al matrix.The Al-30%Zn sample annealed at 350°C for 0.5 h has good comprehensive properties,including the tensile strength of 330 MPa,the elongation to failure of 10%and the room-temperature damping properties(tanθ)of 0.025. 展开更多
关键词 aluminum matrix composites fiber reinforcement mechanical properties damping properties
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部