期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
逻辑函数增减项等效及其在化简中的应用
1
作者 赖家胜 《通信技术》 2009年第2期320-322,325,共4页
在逻辑代数中,逻辑减与逻辑加、逻辑乘与逻辑除并不是一对逆过程,因而不能相互抵消。文章通过理论分析和推导,设计出分别基于最小项和最大项的增项函数和减项函数构建方法,使得逻辑函数同时增加增项函数和减项函数后与原函数等效,从而... 在逻辑代数中,逻辑减与逻辑加、逻辑乘与逻辑除并不是一对逆过程,因而不能相互抵消。文章通过理论分析和推导,设计出分别基于最小项和最大项的增项函数和减项函数构建方法,使得逻辑函数同时增加增项函数和减项函数后与原函数等效,从而实现增项函数与减项函数的相互抵消,并具体介绍了该方法在最小项卡诺图化简、最大项卡诺图化简和单轨输入化简中的应用。 展开更多
关键词 等效 增项函数 函数 逻辑化简 单轨输入
原文传递
On the growth of transcendental entire solutions of algebraic differential equations 被引量:2
2
作者 朱玲妹 杨德贵 王小灵 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期98-102,共5页
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ... In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail. 展开更多
关键词 algebraic differential equation DEGREE entire solutions
下载PDF
Existence and concentration behavior of sign-changing solutions for quasilinear Schr?dinger equations equations
3
作者 DENG YinBin SHUAI Wei 《Science China Mathematics》 SCIE CSCD 2016年第6期1095-1112,共18页
We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcrit... We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+. 展开更多
关键词 sign-changing solution quasilinear Schr6dinger equations concentration profile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部