In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcrit...We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.展开更多
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金supported by National Natural Science Foundation of China(Grant Nos.11371160 and 11328101)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.#IRT13066)
文摘We consider the quasilinear Schrdinger equations of the form-ε~2?u + V(x)u- ε~2?(u2)u = g(u), x ∈ R^N,where ε 〉 0 is a small parameter, the nonlinearity g(u) ∈ C^1(R) is an odd function with subcritical growth and V(x) is a positive Hlder continuous function which is bounded from below, away from zero, and infΛV(x) 0 such that for all ε∈(0, ε0],the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε→ 0~+.