Serving as gas diffusion layers(GDLs),the thermal conductivity of carbon paper(CP)plays a significant role in the heat transfer management in fuel cells.In the present study,the effect of graphitization degree of CP o...Serving as gas diffusion layers(GDLs),the thermal conductivity of carbon paper(CP)plays a significant role in the heat transfer management in fuel cells.In the present study,the effect of graphitization degree of CP on its through plane thermal conductivity and in-plane thermal conductivity is investigated.The relationship between heat treatment temperatures(1800,2000,2200,2400 and 2500℃)and graphitization degree is also investigated by SEM,XRD and Raman measurements.A model for CP under different graphitization degree is suggested considering the thermal conductivity difference of carbon fiber and matrix carbon.The experimental and simulation results are compared.The results show that the graphitization degree has a significant impact on the through-plane thermal conductivity and in plane thermal conductivity.展开更多
Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomer-based matrices usually make it difficult for the conductive sheets to form...Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomer-based matrices usually make it difficult for the conductive sheets to form continuous conductive networks. In this work, we used tunicate-derived cellulose nanocrystals (TCNC) instead of traditional elastomers as the matrix for polydopamine (PDA)-coated and reduced graphene oxide (GO) to prepare conductive paper, which, at a low concentration, were better for the formation of conductive networks from conductive sheets. It was found that the Young’s modulus of the conductive paper produced via this strategy reached as high as 7 GPa. Meanwhile, owing to the partial reduction of GO during the polymerization of dopamine, the conductivity of the conductive paper reached as high as 1.3×10-5 S/cm when the PDA-coated GO content was 1 wt%, which was much higher than the conductivity of pure GO (-4.60×10-8 S/cm). This work provides a new strategy for preparing environmentally friendly conductive papers with good mechanical properties and low conductive fller content, which may be used to produce high-performance, low-cost electronic devices.展开更多
基金Projects(2020 JJ 5142,2019 RS 2067)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(19 C 0581)supported by the Research Foundation of Education Bureau of Hunan Province,China。
文摘Serving as gas diffusion layers(GDLs),the thermal conductivity of carbon paper(CP)plays a significant role in the heat transfer management in fuel cells.In the present study,the effect of graphitization degree of CP on its through plane thermal conductivity and in-plane thermal conductivity is investigated.The relationship between heat treatment temperatures(1800,2000,2200,2400 and 2500℃)and graphitization degree is also investigated by SEM,XRD and Raman measurements.A model for CP under different graphitization degree is suggested considering the thermal conductivity difference of carbon fiber and matrix carbon.The experimental and simulation results are compared.The results show that the graphitization degree has a significant impact on the through-plane thermal conductivity and in plane thermal conductivity.
基金the National Natural Science Foundation of China (51373131)Fundamental Research Funds for the Central Universities (XDJK2016A017 and XDJK2016C033)+1 种基金Project of Basic Science and Advanced Technology Research, Chongqing Science and Technology Commission (cstc2016, jcyjA0796)the Talent Project of Southwest University (SWU115034)
文摘Conductive papers made from graphene and its derivatives are important for the development of electronic devices; however, elastomer-based matrices usually make it difficult for the conductive sheets to form continuous conductive networks. In this work, we used tunicate-derived cellulose nanocrystals (TCNC) instead of traditional elastomers as the matrix for polydopamine (PDA)-coated and reduced graphene oxide (GO) to prepare conductive paper, which, at a low concentration, were better for the formation of conductive networks from conductive sheets. It was found that the Young’s modulus of the conductive paper produced via this strategy reached as high as 7 GPa. Meanwhile, owing to the partial reduction of GO during the polymerization of dopamine, the conductivity of the conductive paper reached as high as 1.3×10-5 S/cm when the PDA-coated GO content was 1 wt%, which was much higher than the conductivity of pure GO (-4.60×10-8 S/cm). This work provides a new strategy for preparing environmentally friendly conductive papers with good mechanical properties and low conductive fller content, which may be used to produce high-performance, low-cost electronic devices.