To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre...To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.展开更多
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C)...Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into commo...Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into common brasses by casting.SEM and EDS were used to analyze the microstructure of graphite brasses,and the relationship between the microstructure and machinability was investigated.The results show that graphite particles are formed by the decomposition of cementite particles in cast brasses.The graphite particles are uniformly dispersed in the brass matrix with the average size of 5.0 μm and the volume fraction of ~1.1%.The machinability in the graphite brass is dramatically increased relative to the common brass,because of the lubricating properties of graphite particles and its role in chip breaking.The workpiece surface of the graphite brasses chips is smooth and burr-free,and the chips of graphite brasses are short(C-shape) and discontinuous,which is much better than that of the long spiral chips of common brasses.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu ...In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.展开更多
The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typ- ical anionic dye, can attach on GO v...The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typ- ical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.展开更多
Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is adde...Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.展开更多
The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolatio...The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolation net- work and physical properties of graphite/antimony composites. The result shows that there are two important factors to enhance friction and wear behaviour of graphite/antimony composites at high temperature: 1) the formation of the pore network in the preform, which is called the first percolation and 2) the optimization of infiltration method in the process of infiltrating antimony, which is called the second percolation. By adding some pyrolysate and controlling the roasting process, perfect net pores and sub-micron percolation microstructure may be formed in the graphite preform. By con- trolling the infiltration process, the saturation of molten antimony infiltrating into perfect pores can be optimized.展开更多
To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results ...To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.展开更多
In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDY...In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDYs increase as the number of halogen atoms increases.It is also found that the position of the valence band maximum(VBM)is influenced by the electronegativity of halogen atoms.The higher the electronegativity,the deeper the VBM of the GDYs modified by the same number of halogen atoms.Importantly,our results revealed that the bandgap of GDY could be effectively tuned by mixing types of halogen atoms.The new generated conduction band and valence band edges are properly aligned with the oxidation and reduction potentials of water.Further thermodynamic analysis confirms that some models with mixing types of halogen atoms exhibit higher performance of overall photocatalytic water splitting than non-mixing models.This work provides useful insights for designing efficient photocatalysts that can be used for overall water splitting.展开更多
Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate...Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.展开更多
Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious ...Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.展开更多
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result...The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.展开更多
Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was...Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was observed. The microstructure, hardness and wear property of the composites with the graphite content of 5%, 10%, 15% and 20% were investigated, respectively. The results reveal that Ce tends to enrich around the boundaries of graphite particles and Al2O3 short fibers, and forms Al3Ce phase. When the graphite content increases to 20%, the grain size becomes small. Moreover, with increasing the graphite content, the microhardness of the composites decreases but the wear resistance increases. The graphite which works as lubricant during dry sliding process decreases the wear loss. At low load, the wear mechanism of the composite is mainly abrasive wear and oxidation wear; at high load, except that the composite with 20% graphite is still with abrasive wear and oxidation wear, the wear mechanism of other composites changes to delamination wear.展开更多
Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior...Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior for the Ag-SG and Ag-FG under the dry sliding wear was investigated with a pin-on-disk tribometer at a load of 3.0 N in atmosphere condition.The results indicated that the minimum wear rate of 3.5×10^-5 mm^3/(N·m)for Ag-FG was achieved and it reduced by nearly an order of magnitude,reaching 1.6×10^-6 mm^3/(N·m)for the Ag-SG.The obviously different tribological behaviors between the Ag-SG and Ag-FG were closely related to the formation of cracks in the sub-surface.The stress concentration tended to generate at the edges of flake graphite during sliding process,which resulted in the cracks and severe delamination wear of Ag-FG.However,no cracks were found around the spherical graphite in Ag-SG.The spherical graphite can effectively inhibit the initiation and propagation of cracks,achieving high wear resistance.展开更多
A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rough...A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rougher flotation in Denver flotation cell using diesel as collector and pine oil as frother yielded a rougher concentrate. Regrinding (d80:144 μm) of this rougher concentrate was opted for further libera-tion of graphite. It was followed by cleaning in laboratory flotation column. This combined process of relatively coarse primary grinding followed by regrinding and cleaning in flotation column resulted in final concentrate of 7.44% yield with 89.65% fixed carbon and 6.00% ash. This approach of two-stage grinding to recover the flake graphite at the coarsest possible grind can help to minimize grinding energy costs. A conceptual flow sheet which is cost effective was developed based on this methodology.展开更多
The magnesium matrix composites reinforced by graphite particles and Al2O3 short fibers were fabricated by squeeze-infiltration technique.The additions dispersed uniformly and no agglomeration and casting defect were ...The magnesium matrix composites reinforced by graphite particles and Al2O3 short fibers were fabricated by squeeze-infiltration technique.The additions dispersed uniformly and no agglomeration and casting defect were observed.The microstructures and wear properties of the composites with different Ce contents of 0,0.4%,0.8%and 1.0%,respectively,were investigated.Especially,the effect of Ce on the properties was discussed.The results reveal that Ce enriches around the boundaries of graphite particles and forms Al3Ce phase with Al.The addition of Ce refines the microstructures of the composites.With the increase of Ce content,the grain size becomes smaller and the wear resistance of the composite is improved.At low load,the composites have similar worn surface.At high load,the composite with 1.0%Ce has the best wear resistance due to the existence of Al3Ce phase.The Al3Ce phase improves the thermal stability of the matrix so the graphite particles can keep intact,which can still work as lubricant. At low load,the wear mechanism is abrasive wear and oxidation wear.At high load,the wear mechanism changes to delamination wear for all the composites.展开更多
The increasing impact of disasters at local,national,regional and global scales in recent decades has provided enough evidence to urgently direct attention towards the necessity of disaster risk reduction and manageme...The increasing impact of disasters at local,national,regional and global scales in recent decades has provided enough evidence to urgently direct attention towards the necessity of disaster risk reduction and management,and this requires knowledge.Knowledge without communication is barren,and to communicate the risk of disaster it is necessary to understand the perception of the people at risk.In particular,this paper deals with the necessity to delineate strategies of risk communication in pursuance of risk knowledge as a core of disaster risk reduction and management,especially in mountain areas of developing countries.To portray this issue,an analysis of landslide risk perception in terms of experience,landslide risk awareness,exposure,preparedness,and risk communication and trust was undertaken in the municipality of Teziutlán,Puebla,Mexico,an area that has been affected for several decades by episodes of mass movement.Analysis of the responses to a risk perception questionnaire has offered valuable insights in terms of the information and knowledge most required by the people living in the area of interest,in order to devise a realistic and functional strategy to communicate the risk of a landslide disaster.This includes better understanding of controlling factorsand drivers of this risk,and the establishment of potential trusted sources of risk communication.Beyond considering practical matters of risk assessment and management,risk perception and communication can increase the resilience of vulnerable people,and can enhance capacity building for present and future generations.展开更多
基金the financial support from the National Natural Science Foundation of China(No.51801078).
文摘To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles.
基金Projects(51221001,50972121)supported by the National Natural Science Foundation of ChinaProject(B08040)supported by the Introducing Talents of Discipline to Universities,ChinaProject(11-BZ-2012)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
基金Projects(51271090,51364036,51471083)supported by the National Natural Science Foundation of ChinaProject(IRT0730)supported by the Program for Changjiang Scholars and Innovative Research Team in University,China+1 种基金Project(NCET-10-0184)supported by the Program for New Century Excellent Talents in University,ChinaProject(20103601110001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into common brasses by casting.SEM and EDS were used to analyze the microstructure of graphite brasses,and the relationship between the microstructure and machinability was investigated.The results show that graphite particles are formed by the decomposition of cementite particles in cast brasses.The graphite particles are uniformly dispersed in the brass matrix with the average size of 5.0 μm and the volume fraction of ~1.1%.The machinability in the graphite brass is dramatically increased relative to the common brass,because of the lubricating properties of graphite particles and its role in chip breaking.The workpiece surface of the graphite brasses chips is smooth and burr-free,and the chips of graphite brasses are short(C-shape) and discontinuous,which is much better than that of the long spiral chips of common brasses.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金Project(50471007)supported by the National Natural Science Foundation of China
文摘In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.
基金This work was supported by the National Natural Basic Research Program of China (No.2013CB922200),the National Natural Science Foundation of China (No.11674128, No.11474129, and No.11504129), Jilin Province Scientific and Technological Development Program, China (No.20170101063JC), the Thirteenth Five- Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (No.n00).
文摘The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typ- ical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.
基金Project(2018GK4015)supported by the Hunan Provincial Strategic Emerging Industry Project,China
文摘Finer nanoplates of silver are prepared by self-assembly on the surface of graphene,and the low-temperature sintered high conductivity ink containing the silver nanoplates is prepared.Most importantly,graphene is added to the solution before the chemical reduction reaction occurs.Firstly,it is found that silver nanoplates have self-assembly phenomenon on the surface of graphene.Secondly,the Ag nano hexagonal platelets(AgNHPs)with small particle sizes(10 nm),narrow distribution and good dispersion are prepared.Especially,smaller sizes(10 nm)and narrower particle size distribution of AgNHPs particles can be easily controlled by using this process.Finally,the conductivity of the ink is excellent.For example,when the printed patterns were sintering at 150℃,the resistivity of the ink(GE:0.15 g/L)reached the minimum value of 2.2×10^-6 cm.And the resistivity value was 3.7×10^-6Ωcm,when it was sintered at 100℃ for 30 min.The conductive ink prepared can be used for the field of printing electronics as ink-jet printing ink.
文摘The microstructure, friction and wear behaviour of graphite preform and graphite/antimony composites are analysed based on the percolation theory of hydrodynamics to investigate the relationship between the percolation net- work and physical properties of graphite/antimony composites. The result shows that there are two important factors to enhance friction and wear behaviour of graphite/antimony composites at high temperature: 1) the formation of the pore network in the preform, which is called the first percolation and 2) the optimization of infiltration method in the process of infiltrating antimony, which is called the second percolation. By adding some pyrolysate and controlling the roasting process, perfect net pores and sub-micron percolation microstructure may be formed in the graphite preform. By con- trolling the infiltration process, the saturation of molten antimony infiltrating into perfect pores can be optimized.
基金Project(19B126)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(21772035)supported by the National Natural Science Foundation of China+1 种基金Projects(2018JJ3099,2019JJ40058)supported by the Provincial Natural Science Foundation of Hunan,ChinaProject supported by the Innovation and Entrepreneurship Training Program of Hunan Institute of Engineering,China。
文摘To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.
基金funded by the National Natural Science Foundation of China(No.21973013 and No.21673040)the Natural Science Foundation of Fujian Province of China(No.2020J02025)“Chuying Program”for the Top Young Talents of Fujian Province。
文摘In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDYs increase as the number of halogen atoms increases.It is also found that the position of the valence band maximum(VBM)is influenced by the electronegativity of halogen atoms.The higher the electronegativity,the deeper the VBM of the GDYs modified by the same number of halogen atoms.Importantly,our results revealed that the bandgap of GDY could be effectively tuned by mixing types of halogen atoms.The new generated conduction band and valence band edges are properly aligned with the oxidation and reduction potentials of water.Further thermodynamic analysis confirms that some models with mixing types of halogen atoms exhibit higher performance of overall photocatalytic water splitting than non-mixing models.This work provides useful insights for designing efficient photocatalysts that can be used for overall water splitting.
文摘Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.
基金Project(51102035)supported by the National Natural Science Foundation of China
文摘Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.
基金Supported by National Natural Science Foundation of China under Grant No.10902083the Natural Science Foundation of Shannxi Province under Grant No.2009GM1007
文摘The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.
基金Project(2006BAE04B04-1) supported by the Special Task Document of National Science and Technology Program of ChinaProject(20060308) supported by Science and Technology Development Program of Jilin Province, ChinaProject supported by "985 Project" of Jilin University, China
文摘Using squeeze-infiltration technique, Mg-9Al-1Zn-0.8Ce composite reinforced by graphite particles and Al2O3 short fibers was fabricated. The reinforcing phases combined closely with the matrix and no agglomeration was observed. The microstructure, hardness and wear property of the composites with the graphite content of 5%, 10%, 15% and 20% were investigated, respectively. The results reveal that Ce tends to enrich around the boundaries of graphite particles and Al2O3 short fibers, and forms Al3Ce phase. When the graphite content increases to 20%, the grain size becomes small. Moreover, with increasing the graphite content, the microhardness of the composites decreases but the wear resistance increases. The graphite which works as lubricant during dry sliding process decreases the wear loss. At low load, the wear mechanism of the composite is mainly abrasive wear and oxidation wear; at high load, except that the composite with 20% graphite is still with abrasive wear and oxidation wear, the wear mechanism of other composites changes to delamination wear.
基金Project(51674304)supported by the National Natural Science Foundation of ChinaProject(2018JJ3677)supported by Natural Science Foundation of Hunan Province,China。
文摘Two kinds of Ag-graphite composites reinforced with spherical graphite(SG)and conventional flake graphite(FG)were prepared by powder metallurgy technology.The effect of graphite morphology on the tribological behavior for the Ag-SG and Ag-FG under the dry sliding wear was investigated with a pin-on-disk tribometer at a load of 3.0 N in atmosphere condition.The results indicated that the minimum wear rate of 3.5×10^-5 mm^3/(N·m)for Ag-FG was achieved and it reduced by nearly an order of magnitude,reaching 1.6×10^-6 mm^3/(N·m)for the Ag-SG.The obviously different tribological behaviors between the Ag-SG and Ag-FG were closely related to the formation of cracks in the sub-surface.The stress concentration tended to generate at the edges of flake graphite during sliding process,which resulted in the cracks and severe delamination wear of Ag-FG.However,no cracks were found around the spherical graphite in Ag-SG.The spherical graphite can effectively inhibit the initiation and propagation of cracks,achieving high wear resistance.
文摘A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rougher flotation in Denver flotation cell using diesel as collector and pine oil as frother yielded a rougher concentrate. Regrinding (d80:144 μm) of this rougher concentrate was opted for further libera-tion of graphite. It was followed by cleaning in laboratory flotation column. This combined process of relatively coarse primary grinding followed by regrinding and cleaning in flotation column resulted in final concentrate of 7.44% yield with 89.65% fixed carbon and 6.00% ash. This approach of two-stage grinding to recover the flake graphite at the coarsest possible grind can help to minimize grinding energy costs. A conceptual flow sheet which is cost effective was developed based on this methodology.
基金Projects(20085012,20060308)supported by the Development Program of Science and Technology of Jilin Province,ChinaProject supported by"985 Project"of Jilin University,China
文摘The magnesium matrix composites reinforced by graphite particles and Al2O3 short fibers were fabricated by squeeze-infiltration technique.The additions dispersed uniformly and no agglomeration and casting defect were observed.The microstructures and wear properties of the composites with different Ce contents of 0,0.4%,0.8%and 1.0%,respectively,were investigated.Especially,the effect of Ce on the properties was discussed.The results reveal that Ce enriches around the boundaries of graphite particles and forms Al3Ce phase with Al.The addition of Ce refines the microstructures of the composites.With the increase of Ce content,the grain size becomes smaller and the wear resistance of the composite is improved.At low load,the composites have similar worn surface.At high load,the composite with 1.0%Ce has the best wear resistance due to the existence of Al3Ce phase.The Al3Ce phase improves the thermal stability of the matrix so the graphite particles can keep intact,which can still work as lubricant. At low load,the wear mechanism is abrasive wear and oxidation wear.At high load,the wear mechanism changes to delamination wear for all the composites.
基金the financial support provided by CONACyT through the research project 156242
文摘The increasing impact of disasters at local,national,regional and global scales in recent decades has provided enough evidence to urgently direct attention towards the necessity of disaster risk reduction and management,and this requires knowledge.Knowledge without communication is barren,and to communicate the risk of disaster it is necessary to understand the perception of the people at risk.In particular,this paper deals with the necessity to delineate strategies of risk communication in pursuance of risk knowledge as a core of disaster risk reduction and management,especially in mountain areas of developing countries.To portray this issue,an analysis of landslide risk perception in terms of experience,landslide risk awareness,exposure,preparedness,and risk communication and trust was undertaken in the municipality of Teziutlán,Puebla,Mexico,an area that has been affected for several decades by episodes of mass movement.Analysis of the responses to a risk perception questionnaire has offered valuable insights in terms of the information and knowledge most required by the people living in the area of interest,in order to devise a realistic and functional strategy to communicate the risk of a landslide disaster.This includes better understanding of controlling factorsand drivers of this risk,and the establishment of potential trusted sources of risk communication.Beyond considering practical matters of risk assessment and management,risk perception and communication can increase the resilience of vulnerable people,and can enhance capacity building for present and future generations.