The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above curr...The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.展开更多
Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibite...Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be -3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the UBO8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.展开更多
Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduce...Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.展开更多
文摘The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.
文摘Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be -3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the UBO8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.
文摘Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.