The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and fri...The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.展开更多
We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip an...We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from 〉1 TΩ.sq.^-1 (GF) down to 46 kΩ.sq.^-1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180-280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm.s^-1 and 12 μm.s^-1 and the bias voltage applied to the sample between -8 and -12 V. The electrostatic field required to remove fluorine from carbon is -1.6 V.nm-1. Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus.展开更多
基金Project(46-QP-2009)supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),ChinaProject supported by the Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified.
文摘We report a novel and easily accessible method to chemically reduce graphene fluoride (GF) sheets with nanoscopic precision using high electrostatic fields generated between an atomic force microscope (AFM) tip and the GF substrate. Reduction of fluorine by the electric field produces graphene nanoribbons (GNR) with a width of 105-1,800 nm with sheet resistivity drastically decreased from 〉1 TΩ.sq.^-1 (GF) down to 46 kΩ.sq.^-1 (GNR). Fluorine reduction also changes the topography, friction, and work function of the GF. Kelvin probe force microscopy measurements indicate that the work function of GF is 180-280 meV greater than that of graphene. The reduction process was optimized by varying the AFM probe velocity between 1.2 μm.s^-1 and 12 μm.s^-1 and the bias voltage applied to the sample between -8 and -12 V. The electrostatic field required to remove fluorine from carbon is -1.6 V.nm-1. Reduction of the fluorine may be due to the softening of the C-F bond in this intense field or to the accumulation and hydrolysis of adventitious water into a meniscus.