The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were s...The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were studied in the peripheral and axial directions. Results showed that values of energy absorption decreased with processing pass increasing and the values for the unprocessed, first and second passes were obtained to be 167, 161.4 and 160.7 J, respectively. The differences between the simulation results for the energy absorption values and their experimental values for the unprocessed, the first and the second PTCAP passes samples are about 5%, 10%, and 13%, respectively. The energy absorption capacity was related to the anisotropy coefficient and microstructure. The results demonstrated that grain refinement occurred and ultimate tensile strength(UTS) and microhardness after the first and second PTCAP passes were enhanced, while the increase rate in the first pass was much severer. Also, by applying PTCAP, the deformation modes were altered, such that the deformation mode of the annealed tube was quite symmetrical and circular while for the first and second passes there have been triple and double lobes diamond. The results of the numerical simulation for the deformation mode of the annealed and PTCAPed tubes were consistent with the experimental results. The deformation mode of tubes is dependent on their mechanical properties and variation of the mechanical properties during PTCAP process.展开更多
In order to study buckling propagation mechanism in deep sea pipelines, the contact between pipeline's inner walls in buckling process was studied. A two-dimensional ring model was used to represent the pipeline a...In order to study buckling propagation mechanism in deep sea pipelines, the contact between pipeline's inner walls in buckling process was studied. A two-dimensional ring model was used to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between inner walls. Based on the elastoplastic constitutive relationship and the principle of virtual work theory, the coupling effect of pipeline's nonlinear large deformation and wall contact was included in the theoretical analysis with the aid of MATLAB, and the application scope of the theoretical model was also discussed. The calculated results show that during the loading process, the change in external pressure is closely related to the distribution of section stress, and once the walls are contacting each other, the external pressure increases and then remains stable after it reaches a specific value. Without fracture, the pipeline section will stop showing deformation. The results of theoretical calculations agree well with those of numerical simulations. Finally, in order to ensure reliability and accuracy of the theoretical results, the collapse pressure and propagation pressure were both verified by numerical simulations and experiments. Therefore, the theoretical model can be used to analyze pipeline's buckling deformation and contact between pipeline's inner walls, which forms the basis for further research on three-dimensional buckling propagation.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experim...In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.展开更多
文摘The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing(PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were studied in the peripheral and axial directions. Results showed that values of energy absorption decreased with processing pass increasing and the values for the unprocessed, first and second passes were obtained to be 167, 161.4 and 160.7 J, respectively. The differences between the simulation results for the energy absorption values and their experimental values for the unprocessed, the first and the second PTCAP passes samples are about 5%, 10%, and 13%, respectively. The energy absorption capacity was related to the anisotropy coefficient and microstructure. The results demonstrated that grain refinement occurred and ultimate tensile strength(UTS) and microhardness after the first and second PTCAP passes were enhanced, while the increase rate in the first pass was much severer. Also, by applying PTCAP, the deformation modes were altered, such that the deformation mode of the annealed tube was quite symmetrical and circular while for the first and second passes there have been triple and double lobes diamond. The results of the numerical simulation for the deformation mode of the annealed and PTCAPed tubes were consistent with the experimental results. The deformation mode of tubes is dependent on their mechanical properties and variation of the mechanical properties during PTCAP process.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51239008 and 51179126)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05026-005)
文摘In order to study buckling propagation mechanism in deep sea pipelines, the contact between pipeline's inner walls in buckling process was studied. A two-dimensional ring model was used to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between inner walls. Based on the elastoplastic constitutive relationship and the principle of virtual work theory, the coupling effect of pipeline's nonlinear large deformation and wall contact was included in the theoretical analysis with the aid of MATLAB, and the application scope of the theoretical model was also discussed. The calculated results show that during the loading process, the change in external pressure is closely related to the distribution of section stress, and once the walls are contacting each other, the external pressure increases and then remains stable after it reaches a specific value. Without fracture, the pipeline section will stop showing deformation. The results of theoretical calculations agree well with those of numerical simulations. Finally, in order to ensure reliability and accuracy of the theoretical results, the collapse pressure and propagation pressure were both verified by numerical simulations and experiments. Therefore, the theoretical model can be used to analyze pipeline's buckling deformation and contact between pipeline's inner walls, which forms the basis for further research on three-dimensional buckling propagation.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金Project(CDJZR10110029)supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.