文章以谱方法为理论基础,以条带法为数值求解方法,针对Sears力响应函数引入厚度修正,建立了螺旋桨低频宽带噪声理论预报方法。通过对比10叶模型螺旋桨水筒试验数据,验证了厚度修正的效果,厚度修正后总声级误差由2 d B减少至1.1 d B。文...文章以谱方法为理论基础,以条带法为数值求解方法,针对Sears力响应函数引入厚度修正,建立了螺旋桨低频宽带噪声理论预报方法。通过对比10叶模型螺旋桨水筒试验数据,验证了厚度修正的效果,厚度修正后总声级误差由2 d B减少至1.1 d B。文中利用厚度修正后的预报方法,从三个层次六个方面对影响螺旋桨低频宽带噪声的参数进行研究,并实现了流-声多目标优化设计:(1)单个螺旋桨影响参数灵敏度分析:1外半径型值对总声级影响较大,而内半径几乎没有影响。2利用Sobol灵敏度分析法对两个不同叶数螺旋桨的流场参数和螺旋桨参数进行研究发现:不同桨叶下各参数影响因子几乎一致,来流速度对于螺旋桨低频宽带总声级有最大贡献,约为30%的正效应,其次是湍流度约为22%的正效应,而湍流积分长度仅占7%的负效应。(2)单个螺旋桨流—声多目标优化设计研究:以NSGA-Ⅱ为优化算法,结合非定常面元法和低频宽带噪声预报方法,实现流-声多目标优化设计。(3)多个螺旋桨相对关系稳健性分析:对不同螺旋桨低频宽带噪声相对关系稳健性进行研究,分析湍流积分长度和湍流度变化的影响。该文的研究成果为下一步将低频宽带噪声纳入螺旋桨设计考核指标奠定了理论基础。展开更多
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
A shear wave electromagnetic acoustic transducer(EMAT)optimized structure is proposed by using circumferential annular Halbach magnet structure.Based on the orthogonal test,the effects of the coil conductor width,the ...A shear wave electromagnetic acoustic transducer(EMAT)optimized structure is proposed by using circumferential annular Halbach magnet structure.Based on the orthogonal test,the effects of the coil conductor width,the spacing between adjacent conductors,the number of turns and the lifting distance on EMAT energy conversion effect are studied,and the optimal parameter combination is given.The structural design of the Halbach magnet is proposed.The cost coefficient S of the Halbach structure is defined,and the optimal thickness of auxiliary magnetic pole is obtained.The optimized EMAT coil diameter is reduced by 35%and the echo signal strength is significantly improved.Finally,C-scan imaging is carried out on the sample to verify the detection ability of EMAT.展开更多
A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality an...A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.展开更多
Acoustic echo cancellation based on sub-band filters has the characteristics of rapid con- vergence and small computational complexity. This letter analyses two different sub-band filters design methods which used in ...Acoustic echo cancellation based on sub-band filters has the characteristics of rapid con- vergence and small computational complexity. This letter analyses two different sub-band filters design methods which used in acoustic echo cancellation fields and compares them with each other. Fur- thermore, the sub-band filter construction have been optimized, which lead to the improvement of the computational efficiency. At the same time, this letter combines ear auditory feature with acoustic echo cancellation, thus improves the original algorithms by importing a new objective function creatively. At the last part, a simulation environment has been designed and a computer simulation has been carried out. The final results indicate that this method can meet the requirements of actual projects, and some improvements are demonstrated on performance and calculation quantity compared to original algo- rithms.展开更多
This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by th...This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by the Lorentz force between the eddy current and the static magnetic field by the magnets. From the experimental result on self-prepared EMATs, the intensity and the directivity of the transmitted wave depend on the widths of the coil and the magnets. By means of EEM analysis the authors attempt to determine the optimal values of the above widths such that both the intensity and the directivity achieve the maximum or allowable performance.展开更多
[ Objectivel The aim was to determine the optimal technology for ultrasonic-assisted extraction of black tea was determined. [ Methed] Taking Black Tea as materials, the Box-Behnken response surface design method of t...[ Objectivel The aim was to determine the optimal technology for ultrasonic-assisted extraction of black tea was determined. [ Methed] Taking Black Tea as materials, the Box-Behnken response surface design method of tea polyphenols ultrasonic-assisted extraction process optimi- zation was applied. The regression optimization model of the ethanol volume fraction, ultrasonic time, and ultrasonic temperature, ethyl acetate extract stalling time and tea polyphenols was established. [ Result] The influence of four factors on the black tea polyphenol solvents affecting size was as follows: ultrasonic time 〉 ethanol volume fraction 〉 stalling extraction time 〉 ultrasound temperature. The best extraction process was ultrasonic time 80 min, volume fraction of 88.99% ethanol, extraction time 89.97 min, ultrasonic temperature of 80℃. At the optimized technical parameters, the black tea phenolic extraction yield can be as high as 73.50%. [ Conclusion] The study provided theoretical basis for the development of tea leaves and black tea.展开更多
This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorith...This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver. The design procedur6 has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.展开更多
Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which i...Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.展开更多
文摘文章以谱方法为理论基础,以条带法为数值求解方法,针对Sears力响应函数引入厚度修正,建立了螺旋桨低频宽带噪声理论预报方法。通过对比10叶模型螺旋桨水筒试验数据,验证了厚度修正的效果,厚度修正后总声级误差由2 d B减少至1.1 d B。文中利用厚度修正后的预报方法,从三个层次六个方面对影响螺旋桨低频宽带噪声的参数进行研究,并实现了流-声多目标优化设计:(1)单个螺旋桨影响参数灵敏度分析:1外半径型值对总声级影响较大,而内半径几乎没有影响。2利用Sobol灵敏度分析法对两个不同叶数螺旋桨的流场参数和螺旋桨参数进行研究发现:不同桨叶下各参数影响因子几乎一致,来流速度对于螺旋桨低频宽带总声级有最大贡献,约为30%的正效应,其次是湍流度约为22%的正效应,而湍流积分长度仅占7%的负效应。(2)单个螺旋桨流—声多目标优化设计研究:以NSGA-Ⅱ为优化算法,结合非定常面元法和低频宽带噪声预报方法,实现流-声多目标优化设计。(3)多个螺旋桨相对关系稳健性分析:对不同螺旋桨低频宽带噪声相对关系稳健性进行研究,分析湍流积分长度和湍流度变化的影响。该文的研究成果为下一步将低频宽带噪声纳入螺旋桨设计考核指标奠定了理论基础。
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
文摘A shear wave electromagnetic acoustic transducer(EMAT)optimized structure is proposed by using circumferential annular Halbach magnet structure.Based on the orthogonal test,the effects of the coil conductor width,the spacing between adjacent conductors,the number of turns and the lifting distance on EMAT energy conversion effect are studied,and the optimal parameter combination is given.The structural design of the Halbach magnet is proposed.The cost coefficient S of the Halbach structure is defined,and the optimal thickness of auxiliary magnetic pole is obtained.The optimized EMAT coil diameter is reduced by 35%and the echo signal strength is significantly improved.Finally,C-scan imaging is carried out on the sample to verify the detection ability of EMAT.
文摘A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.
文摘Acoustic echo cancellation based on sub-band filters has the characteristics of rapid con- vergence and small computational complexity. This letter analyses two different sub-band filters design methods which used in acoustic echo cancellation fields and compares them with each other. Fur- thermore, the sub-band filter construction have been optimized, which lead to the improvement of the computational efficiency. At the same time, this letter combines ear auditory feature with acoustic echo cancellation, thus improves the original algorithms by importing a new objective function creatively. At the last part, a simulation environment has been designed and a computer simulation has been carried out. The final results indicate that this method can meet the requirements of actual projects, and some improvements are demonstrated on performance and calculation quantity compared to original algo- rithms.
文摘This paper considers the design of EMAT (Electro-Magnetic Acoustic Transducer) based on numerical simulation. The EMAT consists of an exiting coil and two permanent magnets, which transmits the ultrasonic wave by the Lorentz force between the eddy current and the static magnetic field by the magnets. From the experimental result on self-prepared EMATs, the intensity and the directivity of the transmitted wave depend on the widths of the coil and the magnets. By means of EEM analysis the authors attempt to determine the optimal values of the above widths such that both the intensity and the directivity achieve the maximum or allowable performance.
文摘[ Objectivel The aim was to determine the optimal technology for ultrasonic-assisted extraction of black tea was determined. [ Methed] Taking Black Tea as materials, the Box-Behnken response surface design method of tea polyphenols ultrasonic-assisted extraction process optimi- zation was applied. The regression optimization model of the ethanol volume fraction, ultrasonic time, and ultrasonic temperature, ethyl acetate extract stalling time and tea polyphenols was established. [ Result] The influence of four factors on the black tea polyphenol solvents affecting size was as follows: ultrasonic time 〉 ethanol volume fraction 〉 stalling extraction time 〉 ultrasound temperature. The best extraction process was ultrasonic time 80 min, volume fraction of 88.99% ethanol, extraction time 89.97 min, ultrasonic temperature of 80℃. At the optimized technical parameters, the black tea phenolic extraction yield can be as high as 73.50%. [ Conclusion] The study provided theoretical basis for the development of tea leaves and black tea.
文摘This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver. The design procedur6 has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.
基金supported by the National Natural Science Foundation of China(Grant Nos.11321062,91016008 and 91216107)
文摘Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.