针对无线传感器网络对目标声源的定位问题,依据无线声传感器网络建立了比例向量迭代目标定位算法,每个传感器节点仅配备一个声音传感器作为其感知设备,通过移动向量迭代使得按照接收能量值计算的距离比例和按照估计位置计算的距离不断靠...针对无线传感器网络对目标声源的定位问题,依据无线声传感器网络建立了比例向量迭代目标定位算法,每个传感器节点仅配备一个声音传感器作为其感知设备,通过移动向量迭代使得按照接收能量值计算的距离比例和按照估计位置计算的距离不断靠近,从而使估计位置逐渐逼近目标真实位置,初始估计位置通过加权质心法获得。根据比例向量迭代算法确定了4节点模型的节点选择方法,并仿真分析了算法的定位过程和定位精度。结果表明,比例向量迭代定位算法能够利用至少3个节点对目标声源进行定位,且平均定位精度为-15 d B,满足无线声传感器网络对目标的定位要求。展开更多
Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect posit...Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.展开更多
文摘针对无线传感器网络对目标声源的定位问题,依据无线声传感器网络建立了比例向量迭代目标定位算法,每个传感器节点仅配备一个声音传感器作为其感知设备,通过移动向量迭代使得按照接收能量值计算的距离比例和按照估计位置计算的距离不断靠近,从而使估计位置逐渐逼近目标真实位置,初始估计位置通过加权质心法获得。根据比例向量迭代算法确定了4节点模型的节点选择方法,并仿真分析了算法的定位过程和定位精度。结果表明,比例向量迭代定位算法能够利用至少3个节点对目标声源进行定位,且平均定位精度为-15 d B,满足无线声传感器网络对目标的定位要求。
基金performed in the Project "The Research of Cluster Structure Based Underwater Acoustic Communication Network Topology Algorithm"supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.