期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
小波变换在局部放电声信号提取中的应用 被引量:13
1
作者 欧阳明鉴 杜伯学 魏国忠 《电力系统及其自动化学报》 CSCD 2004年第4期16-19,76,共5页
在电力设备外表面设置的声传感器可以获取局部放电的声信号 ,文中使用高精度的声信号采集装置来采集局部放电声信号 ,并对实测信号的特性进行分析。由于局部放电信号具有突出的局部瞬变特征 ,可通过这一特性从含有噪声的原始信号中有效... 在电力设备外表面设置的声传感器可以获取局部放电的声信号 ,文中使用高精度的声信号采集装置来采集局部放电声信号 ,并对实测信号的特性进行分析。由于局部放电信号具有突出的局部瞬变特征 ,可通过这一特性从含有噪声的原始信号中有效的提取出局部放电信号。本文采用小波变换在时域和频域具有局部瞬变特征的特点 ,用基于小波变换的消噪算法来提取局放信号。通过对仿真信号和实测信号的处理 。 展开更多
关键词 局部放电(局放) 声信号提取 小波变换 消噪
下载PDF
希尔伯特-黄变换在船舶声信号特征提取算法处理 被引量:3
2
作者 潘巍巍 朱兰 《舰船科学技术》 北大核心 2016年第11X期91-93,共3页
首先分析希尔伯特-黄变换的实现流程;然后针对流程中的经验模态分解进行阐述,得到原始信号的希尔伯特频谱;最后将希尔伯特-黄变换应用于船舶声信号提取中,并利用最近邻分类法进行分类。实验结果表明,希尔伯特-黄变换能够自适应局部的变... 首先分析希尔伯特-黄变换的实现流程;然后针对流程中的经验模态分解进行阐述,得到原始信号的希尔伯特频谱;最后将希尔伯特-黄变换应用于船舶声信号提取中,并利用最近邻分类法进行分类。实验结果表明,希尔伯特-黄变换能够自适应局部的变化,且分辨率高,能够有效的提取非线性、非平稳的船舶声信号特征。 展开更多
关键词 希尔伯特-黄变换 声信号提取 最近邻分类
下载PDF
声发射信号特征提取方法在复合材料层合板中的应用 被引量:4
3
作者 沈书乾 李伟 +4 位作者 龙飞飞 曹书铭 蒋鹏 郭福平 程丽华 《化工机械》 CAS 2021年第6期828-834,915,共8页
将小波包能量谱分析法应用到碳纤维复合材料层合板(CFRP层合板)中,对CFRP层合板的落锤冲击实验过程进行分析,得到CFRP层合板在冲击实验时的损伤类型和各损伤阶段所呈现出来的声发射信号特征,实现材料损伤类型的判别。
关键词 复合材料层合板 CFRP 发射信号特征提取方法 小波包能量谱分析法 落锤冲击实验
下载PDF
多重分形的耐火材料损伤声发射信号特征提取方法 被引量:1
4
作者 苏涛 王志刚 +1 位作者 刘昌明 徐增炳 《机械设计与制造》 北大核心 2015年第8期53-56,共4页
为了对镁碳质耐火材料损伤声发射信号进行有效的特征提取,研究了利用非线性领域的分形方法进行特征提取的可行性。首先利用仿真声发射信号研究了多重分形谱参数(Δα、Δf、K),广义分形维数均值Mean Dq等参数表征信号频谱结构特征的能力... 为了对镁碳质耐火材料损伤声发射信号进行有效的特征提取,研究了利用非线性领域的分形方法进行特征提取的可行性。首先利用仿真声发射信号研究了多重分形谱参数(Δα、Δf、K),广义分形维数均值Mean Dq等参数表征信号频谱结构特征的能力,结果表明多重分形谱宽Δα能够有效的表征信号的频谱特征;然后对镁碳质耐火材料进行单轴压缩试验,采集损伤声发射信号,并计算出两种典型损伤声发射信号的多重分形谱宽Δα,通过多重分形谱宽的分布证实了利用其进行特征提取是可行的。 展开更多
关键词 镁碳质耐火材料 发射信号特征提取 多重分形谱参数 广义分形维数 仿真发射信号
下载PDF
无人机飞行声特征与提取方法比较 被引量:5
5
作者 金恒康 张一闻 王耀杰 《现代电子技术》 北大核心 2019年第22期103-107,112,共6页
目前,对无人机飞行声信号的分析主要是基于传统语音信号处理的手段,并未进行深入分析。文中针对无人机飞行声信号,结合无人机的气动特点深入研究分析得出无人机声信号的特征,分析比较傅里叶变换(FFT)、梅尔倒谱系数(MFCC)和基因周期3种... 目前,对无人机飞行声信号的分析主要是基于传统语音信号处理的手段,并未进行深入分析。文中针对无人机飞行声信号,结合无人机的气动特点深入研究分析得出无人机声信号的特征,分析比较傅里叶变换(FFT)、梅尔倒谱系数(MFCC)和基因周期3种特征提取算法并提取特征,应用支持向量机(SVM)分类算法,进行机型识别分类。实测与实验结果表明,FFT与MCC识别率相近,FFT运算复杂度低,基因周期不太适合单独进行特征识别,因此得出FFT适合作为无人机声特征提取方法。 展开更多
关键词 无人机信号 信号特征提取 机型分类 算法分析 特征识别 实验分析
下载PDF
Applications of Wigner high-order spectra in feature extraction of acoustic emission signals 被引量:2
6
作者 Xiao Siwen Liao Chuanjun Li Xuejun 《Engineering Sciences》 EI 2009年第3期59-65,共7页
The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components,the paper introduces Wigner ... The characteristics of typical AE signals initiated by mechanical component damages are analyzed. Based on the extracting principle of acoustic emission(AE) signals from damaged components,the paper introduces Wigner high-order spectra to the field of feature extraction and fault diagnosis of AE signals. Some main performances of Wigner binary spectra,Wigner triple spectra and Wigner-Ville distribution (WVD) are discussed,including of time-frequency resolution,energy accumulation,reduction of crossing items and noise elimination. Wigner triple spectra is employed to the fault diagnosis of rolling bearings with AE techniques. The fault features reading from experimental data analysis are clear,accurate and intuitionistic. The validity and accuracy of Wigner high-order spectra methods proposed agree quite well with simulation results. Simulation and research results indicate that wigner high-order spectra is quite useful for condition monitoring and fault diagnosis in conjunction with AE technique,and has very important research and application values in feature extraction and faults diagnosis based on AE signals due to mechanical component damages. 展开更多
关键词 acoustic emission Wigner spectra Wigner binary spectra Wigner triple spectra feature extraction rolling bearing
下载PDF
Classifying ships by their acoustic signals with a cross-bispectrum algorithm and a radial basis function neural network
7
作者 李思纯 杨德森 金莉萍 《Journal of Marine Science and Application》 2009年第1期53-57,共5页
An algorithm for estimating the cross-bispectrum of an acoustic vector signal was formulated. Composed features of sound pressure and acoustic vector signals are extracted by the proposed algorithm and other estimatin... An algorithm for estimating the cross-bispectrum of an acoustic vector signal was formulated. Composed features of sound pressure and acoustic vector signals are extracted by the proposed algorithm and other estimating algorithms for secondary and higher order spectra. Its effectiveness was tested with lake and sea trial data. These features can be used to construct an input vector set for a radial basis function neural network. The classification of vessels can then be made based on the extracted features. It was shown that the composed features of acoustic vector signals are more easily divided into categories than those of pressure signals. When using the composed features of acoustic vector signals, the recognition rate of underwater acoustic targets improves. 展开更多
关键词 acoustic vector signal cross-bispectrum feature extraction RBFNN ship classification
下载PDF
Research on weak signal extraction and noise removal for GPR data based on principal component analysis 被引量:1
8
作者 CHEN Lingna ZENG Zhaofa +1 位作者 LI Jing YUAN Yuan 《Global Geology》 2015年第3期196-202,共7页
The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of unde... The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal, the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower-order PCs stand h^r the strong correlated target signals of the raw data, and the higher-order ones present the uneorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise. 展开更多
关键词 ground penetrating radar principal component analysis target extraction noise removing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部