The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response t...The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.展开更多
In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs ha...In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs have been successfully tested in ultrasonic inspection, the effect of the grating length on the sensitivity of the FBG ultrasonic sensing system is yet to be analyzed. Hence, using the simulation model, the main influencing factor on the sensitivity of the ultrasonic sensing system with different lengths gratings was first investigated. In the following experiment, the ultrasonic responses of the sensing system with six different lengths FBGs were obtained, respectively. The theoretical analysis and the experimental results would be useful for sensitivity improvement of the FBG-based ultrasonic and acoustic emission sensing system.展开更多
Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advanta...Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified - fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Perot configurations - and their recent developments are summarized.展开更多
This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural a...This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed.展开更多
This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted...This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.展开更多
The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is an...The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.展开更多
An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the g...An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the grating length was much shorter than the AE wavelength. In addition, an improved AE location method based on the Gabor wavelet transform (WT) and threshold analysis was represented. The method was testified through AE linear location experiments based on a tunable narrow-band laser interrogation system using ultra-short FBG sensors as AE sensors. Results of the experiments showed that 86% of the linear location errors were less than 10mm.展开更多
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int...The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.展开更多
Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipmen...Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.展开更多
基金supported by the National Natural Science Foundation of China (No. 61074163)the Natural Science Foundation of Shandong Province (No.ZR2011FQ025)the Independent Innovation Fund of Shandong University (No.2010GN066)
文摘The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.
文摘In recent years, fiber Bragg gratings (FBGs) have been widely used in ultrasonic detection for practical structural health monitoring in light of its unique advantages over the conventional sensors. Although FBGs have been successfully tested in ultrasonic inspection, the effect of the grating length on the sensitivity of the FBG ultrasonic sensing system is yet to be analyzed. Hence, using the simulation model, the main influencing factor on the sensitivity of the ultrasonic sensing system with different lengths gratings was first investigated. In the following experiment, the ultrasonic responses of the sensing system with six different lengths FBGs were obtained, respectively. The theoretical analysis and the experimental results would be useful for sensitivity improvement of the FBG-based ultrasonic and acoustic emission sensing system.
文摘Acoustic sensing is nowadays a very demanding field which plays an important role in modern society, with applications spanning from structural health monitoring to medical imaging. Fiber-optics can bring many advantages to this field, and fiber-optic acoustic sensors show already performance levels capable of competing with the standard sensors based on piezoelectric transducers. This review presents the recent advances in the field of fiber-optic dynamic strain sensing, particularly for acoustic detection. Three dominant technologies are identified - fiber Bragg gratings, interferometric Mach-Zehnder, and Fabry-Perot configurations - and their recent developments are summarized.
文摘This work presents a short review of the current research on the acousto-optic mechanism applied to optical fibers. The role of the piezoelectric element and the acousto-optic modulator in the excitation of flexural and longitudinal acoustic modes in the frequency range up to 1.2 MHz is highlighted. A combination of the finite elements and the transfer matrix methods is used to simulate the interaction of the waves with Bragg and long period gratings. Results show a very good agreement with experimental data. Recent applications such as the writing of gratings under the acoustic excitation and a novel viscometer sensor based on the acousto-optic mechanism are discussed.
文摘This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.
文摘The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber p!gtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.
基金The authors gratefully acknowledge the financial support for this work from the Natural Science Foundation of China (Grant No. 61074163) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FQ025).
文摘An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the grating length was much shorter than the AE wavelength. In addition, an improved AE location method based on the Gabor wavelet transform (WT) and threshold analysis was represented. The method was testified through AE linear location experiments based on a tunable narrow-band laser interrogation system using ultra-short FBG sensors as AE sensors. Results of the experiments showed that 86% of the linear location errors were less than 10mm.
基金supported by the Technology Agency of the Czech Republic under the grant TA03020277by the Czech Science Foundation under grant P101/12/1271
文摘The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.
基金supported by the National Natural Science Foundation of China(No.41472260)the Fundamental Research Funds of Shandong University(No.2016JC012)the Young Scholars Program of Shandong University(No.2016WLJH30)
文摘Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.