The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimens...The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimensional quantum dot plane and two electrons in the dot plane bound by the ion, is investigated at arbitrary strength of magnetic field by making use of the method of few-body physics. Discontinuous ground-state energy transitions induced by the magnetic field are reported. The dependence of the binding energy of the D<SUP>-</SUP> ground state on the quantum dot radius is obtained. A considerable enhancement of the binding is found for the D<SUP>-</SUP> ground state, which results from the confinement of electrons and electron-phonon coupling.展开更多
Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D f...Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.展开更多
Based on a theoretical motion equation of encapsulated microbubbles within an ultrasound field, the subharmonic characterizations of microbubbles are optimally designed and analyzed by a computer aided design system. ...Based on a theoretical motion equation of encapsulated microbubbles within an ultrasound field, the subharmonic characterizations of microbubbles are optimally designed and analyzed by a computer aided design system. The effects of size, shell elasticity and acoustic pressure on subharmonic response of microbubbles are calculated theoretically to obtain the optimal parameters for nondestructive subharmonic imaging. In addition, microbubbles with different shell elasticity are prepared, and their subharmonic responses are measured in vitro. The results of theoretical calculation and acoustic measurement show that good subharmonic enhancement can be obtained by using the encapsulated microbubbles with the mean size of 3 μm, which were prepared from the surfactant solution with the proper ratio of shell material. It is also shown that the best operating acoustic pressure is 200 to 400 kPa for nondestructive subharmonic imaging based on such kind of microbubbles.展开更多
文摘The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimensional quantum dot plane and two electrons in the dot plane bound by the ion, is investigated at arbitrary strength of magnetic field by making use of the method of few-body physics. Discontinuous ground-state energy transitions induced by the magnetic field are reported. The dependence of the binding energy of the D<SUP>-</SUP> ground state on the quantum dot radius is obtained. A considerable enhancement of the binding is found for the D<SUP>-</SUP> ground state, which results from the confinement of electrons and electron-phonon coupling.
基金supported by the Fundamental Research Funds For the Central Universities (Grant No. HEUCFR1013)
文摘Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized near-field acoustical holography (SONAH) and moving frame acoustical holography (MFAH). The theoretical formulation is systematically addressed. This method enables us to visualize the noise generated by moving noise sources and the measurement array can be smaller than the source, which improves the practicability and efficiency of this technology. Numerical simulations are presented to demonstrate the advantages of hybrid NAH. Then, two experiments have been carried out with a line array of hydrophones. The results of simulations and experiments support the proposed theory, which shows the advantage of hybrid NAH in the reconstruction of an acoustic field in an underwater holographic measurement.
基金This work was supported by the National Natural Science Foundation of China (30270404) High Technology Research and Development Program of China (863 Program, 2004AA218022).
文摘Based on a theoretical motion equation of encapsulated microbubbles within an ultrasound field, the subharmonic characterizations of microbubbles are optimally designed and analyzed by a computer aided design system. The effects of size, shell elasticity and acoustic pressure on subharmonic response of microbubbles are calculated theoretically to obtain the optimal parameters for nondestructive subharmonic imaging. In addition, microbubbles with different shell elasticity are prepared, and their subharmonic responses are measured in vitro. The results of theoretical calculation and acoustic measurement show that good subharmonic enhancement can be obtained by using the encapsulated microbubbles with the mean size of 3 μm, which were prepared from the surfactant solution with the proper ratio of shell material. It is also shown that the best operating acoustic pressure is 200 to 400 kPa for nondestructive subharmonic imaging based on such kind of microbubbles.