Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into accoun...Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.展开更多
基金Project(JY0300122503)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(P140c090303110c0904)supported by NLAIC Research Fund,ChinaProjects(K5051225014,7214608503)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.