The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical prope...The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical properties of the samples were studied by OM, SEM and MTS material tester. The results show that the microstructure and mechanical properties are improved after the ultrasonic vibration. The best effects of ultrasonic vibration on microstructure and mechanical properties were obtained with the ultrasonic vibration power of 600 W and time of 100 s. The cavitation and acoustic streaming caused by ultrasonic treatment play a major role in refining the microstructure and increasing mechanical properties of the alloy.展开更多
Cadmium was replaced by zinc in ammoniacal system using an electrically enhanced method under ultrasonic waves.Five main influencing factors were investigated by a single-factor experiment to determine the optimum par...Cadmium was replaced by zinc in ammoniacal system using an electrically enhanced method under ultrasonic waves.Five main influencing factors were investigated by a single-factor experiment to determine the optimum parameters.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the reaction mechanism of electrically enhanced cementation of cadmium on a zinc plate.The optimum parameters were a temperature of 35℃,a cathode-to-anode area ratio of 1:2,an anode current density of 15 A/m2,an ultrasonic frequency of 40 kHz a reaction time of 6 h and an ultrasonic power of 100 W.The extraction rate was 99.21%,and the production of byproduct“floating sponge cadmium”was inhibited.The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that ultrasonic waves can promote and accelerate the replacement reaction,decrease the voltage requirement of the electrically enhanced replacement reaction,and change the reaction steps.In addition,increasing the temperature and ultrasonic power can promote and accelerate electrically enhanced replacement reactions and decrease the electric potential requirement.展开更多
Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into accoun...Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.展开更多
基金Projects(PHR200906101,00900054R7001,JC009011201301)supported by Beijing Municipal Education Commission, ChinaProject(X1009011201002)supported by Beijing University of Technology Science Foundation for Youths, China
文摘The effects of ultrasonic treatment on the microstructure and mechanical properties of Mg-5Zn-2Er alloy at room temperature (RT) and high temperature (HT) were investigated. The microstructure and mechanical properties of the samples were studied by OM, SEM and MTS material tester. The results show that the microstructure and mechanical properties are improved after the ultrasonic vibration. The best effects of ultrasonic vibration on microstructure and mechanical properties were obtained with the ultrasonic vibration power of 600 W and time of 100 s. The cavitation and acoustic streaming caused by ultrasonic treatment play a major role in refining the microstructure and increasing mechanical properties of the alloy.
基金Project (51574294) supported by the National Natural Science Foundation of ChinaProject (2018zzts447) supported by the Fundamental Research Funds for the Central Universities of Central South University, China
文摘Cadmium was replaced by zinc in ammoniacal system using an electrically enhanced method under ultrasonic waves.Five main influencing factors were investigated by a single-factor experiment to determine the optimum parameters.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the reaction mechanism of electrically enhanced cementation of cadmium on a zinc plate.The optimum parameters were a temperature of 35℃,a cathode-to-anode area ratio of 1:2,an anode current density of 15 A/m2,an ultrasonic frequency of 40 kHz a reaction time of 6 h and an ultrasonic power of 100 W.The extraction rate was 99.21%,and the production of byproduct“floating sponge cadmium”was inhibited.The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that ultrasonic waves can promote and accelerate the replacement reaction,decrease the voltage requirement of the electrically enhanced replacement reaction,and change the reaction steps.In addition,increasing the temperature and ultrasonic power can promote and accelerate electrically enhanced replacement reactions and decrease the electric potential requirement.
基金Project(JY0300122503)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(P140c090303110c0904)supported by NLAIC Research Fund,ChinaProjects(K5051225014,7214608503)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the Fermi's golden rule and the theory of Boltzmann collision term approximation, a physically-based model for hole scattering rate(SR) in strained Si1-x Gex/(100)Si was presented, which takes into account a variety of scattering mechanisms,including ionized impurity, acoustic phonon, non-polar optical phonon and alloy disorder scattering. It is indicated that the SRs of acoustic phonon and non-polar optical phonon decrease under the strain, and the total SR in strained Si1-x Gex/(100)Si also decreases obviously with increasing Ge fraction(x). Moreover, the total SR continues to show a constant tendency when x is less than 0.3. In comparison with bulk Si, the total SR of strained Si1-x Gex/(100) Si decreases by about 58%.