Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 n...In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.展开更多
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
文摘In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.