The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics...The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.展开更多
The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acou...The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.展开更多
A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying ...A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying the auditory filters.A cochlear mechanical transduction model is built to illustrate the audio signals processing procedure in cochlea,and then the neuron filter mechanism is modeled to indirectly obtain the outputs with the cochlear properties of frequency tuning and non-linear amplification.The mathematic description of the proposed algorithm is derived by the two models.The parameter space,the parameter selection rules and the error correction of the proposed algorithm are discussed.The unit impulse responses in the time domain and the frequency domain are simulated and compared to probe into the characteristics of the proposed algorithm.Then a 24-channel filter bank is built based on the proposed algorithm and applied to the enhancements of the audio signals.The experiments and comparisons verify that,the proposed algorithm can effectively divide the audio signals into different frequencies,significantly enhance the high frequency parts,and provide positive impacts on the performance of speech enhancement in different noise environments,especially for the babble noise and the volvo noise.展开更多
Some two-microphone noise reduction techniques that work in the frequency domain exploit coherence function between two noisy signals. They have shown good results when noise signals on two sensors are uncorrelated, b...Some two-microphone noise reduction techniques that work in the frequency domain exploit coherence function between two noisy signals. They have shown good results when noise signals on two sensors are uncorrelated, but their per-formance decreases with correlated noises. Coherence based methods can be improved when the cross power spectral density (CPSD) of correlated noise signals is available. In this paper, we propose a new method for estimation of the CPSD of the noise, which is based on the minimum tracking technique. Despite the fact that the proposed estimator does not need to implement a voice activity detector (VAD), its performance is comparable to a CPSD estimator that uses an ideal VAD.展开更多
文摘The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.
基金the financial support received from Science and Engineering Research Board (SERB) of DST, New Delhi, India, for the present work (project number: YSS/2015/000085)
文摘The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.
基金Project(17KJB510029)supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions,ChinaProject(GXL2017004)supported by the Scientific Research Foundation of Nanjing Forestry University,China+3 种基金Project(202102210132)supported by the Important Project of Science and Technology of Henan Province,ChinaProject(B2019-51)supported by the Scientific Research Foundation of Henan Polytechnic University,ChinaProject(51521003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProject(KQTD2016112515134654)supported by Shenzhen Science and Technology Program,China。
文摘A filter algorithm based on cochlear mechanics and neuron filter mechanism is proposed from the view point of vibration.It helps to solve the problem that the non-linear amplification is rarely considered in studying the auditory filters.A cochlear mechanical transduction model is built to illustrate the audio signals processing procedure in cochlea,and then the neuron filter mechanism is modeled to indirectly obtain the outputs with the cochlear properties of frequency tuning and non-linear amplification.The mathematic description of the proposed algorithm is derived by the two models.The parameter space,the parameter selection rules and the error correction of the proposed algorithm are discussed.The unit impulse responses in the time domain and the frequency domain are simulated and compared to probe into the characteristics of the proposed algorithm.Then a 24-channel filter bank is built based on the proposed algorithm and applied to the enhancements of the audio signals.The experiments and comparisons verify that,the proposed algorithm can effectively divide the audio signals into different frequencies,significantly enhance the high frequency parts,and provide positive impacts on the performance of speech enhancement in different noise environments,especially for the babble noise and the volvo noise.
基金Project supported by the Iran Telecommunications Research Center (ITRC)
文摘Some two-microphone noise reduction techniques that work in the frequency domain exploit coherence function between two noisy signals. They have shown good results when noise signals on two sensors are uncorrelated, but their per-formance decreases with correlated noises. Coherence based methods can be improved when the cross power spectral density (CPSD) of correlated noise signals is available. In this paper, we propose a new method for estimation of the CPSD of the noise, which is based on the minimum tracking technique. Despite the fact that the proposed estimator does not need to implement a voice activity detector (VAD), its performance is comparable to a CPSD estimator that uses an ideal VAD.