期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于声模态分解的风扇叶盘同步振动辨识 被引量:2
1
作者 文璧 乔百杰 +3 位作者 李泽芃 李镇东 王艳丰 陈雪峰 《航空学报》 EI CAS CSCD 北大核心 2023年第6期226-236,共11页
采用非接触式非侵入式的测量方法实现航空发动机叶盘振动测量,对发动机研制、试验、运行安全具有重要意义。提出基于声模态分解的叶盘同步振动辨识方法,在某三级风扇试验器的进气道布置环形声阵列,作为参照并在动叶布置若干应变片,开展... 采用非接触式非侵入式的测量方法实现航空发动机叶盘振动测量,对发动机研制、试验、运行安全具有重要意义。提出基于声模态分解的叶盘同步振动辨识方法,在某三级风扇试验器的进气道布置环形声阵列,作为参照并在动叶布置若干应变片,开展升降速试验。分析声压信号的叶片通过频率随转速的变化规律,对动叶一阶通过频率下的声阵列信号进行声模态分解,结合应变片实测的动叶坎贝尔图,建立主导声模态数与叶盘节径数的映射关系。声场和动应力测试结果表明:当主导声模态数与叶盘节径相等时,动叶发生共振现象,此时可有效地对风扇叶盘同步振动进行辨识;动叶与前后叶排静叶都存在转静干涉现象,声压信号呈现为窄带宽频,形成声模态离散,造成动叶表现为多模态振动;声压信号是叶片不同振动模态的气动载荷分布的综合反映,具有好的灵敏性和完备性,可实现航空发动机动叶非接触式非侵入式振动测量。 展开更多
关键词 阵列 声模态分解 坎贝尔图 同步振动 转静干涉 动应力
原文传递
Improved random noise attenuation using f-x empirical mode decomposition and local similarity 被引量:6
2
作者 甘叔玮 王守东 +3 位作者 陈阳康 陈江龙 钟巍 张成林 《Applied Geophysics》 SCIE CSCD 2016年第1期127-134,220,共9页
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the... Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method. 展开更多
关键词 Random noise attenuation f-x empirical mode decomposition local similarity dipping event
下载PDF
Ultrasonic echo denoising in liquid density measurement based on improved variational mode decomposition
3
作者 WANG Xiao-peng ZHAO Jun ZHU Tian-liang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第4期326-334,共9页
The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved v... The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale. 展开更多
关键词 liquid density measurement ultrasonic echo signal variational mode decomposition(VMD) signal denoising signal-to-noise ratio
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部