In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coeffic...In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coefficients, prediction of acoustic field, error sensitivity analysis, regularization method and a searching method with dual measurement surfaces for determining the optimal number of expansion terms, is established. Subsequently, the spherical wave source boundary point method (SWSBPM) and its application in the NAH are introduced briefly. Considering the similarity of the SWSM and the SWSBPM for realizing the NAH, they are compared. The similarities and differences of the two methods are illuminated by a rigorous mathematical justification and two experiments on a single source and two coherent sources in the semi-free acoustic field. And, the superiority of the NAH based on the SWSBPM is demonstrated.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50275044)the Research Fund for the Doctoral Program of Higher Education(Grant No 2OO2O359O05).
文摘In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coefficients, prediction of acoustic field, error sensitivity analysis, regularization method and a searching method with dual measurement surfaces for determining the optimal number of expansion terms, is established. Subsequently, the spherical wave source boundary point method (SWSBPM) and its application in the NAH are introduced briefly. Considering the similarity of the SWSM and the SWSBPM for realizing the NAH, they are compared. The similarities and differences of the two methods are illuminated by a rigorous mathematical justification and two experiments on a single source and two coherent sources in the semi-free acoustic field. And, the superiority of the NAH based on the SWSBPM is demonstrated.