In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM ...In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM itself.In doing so,two optimization methods are proposed and implemented to avoid wavefield storage.Firstly,the RTM based on the excitation-amplitude imaging condition uses the excitation time to judge the imaging time,and accordingly,we only need to store a small part of wavefield,such as the wavefield data of dozens of time points,the instances prove that they can even be imaged by only two time points.The traditional RTM usually needs to store the wavefield data of thousands of time points,compared with which the data storage can be reduced by tens or even thousands of times.Secondly,the RTM based on the random boundary uses the idea that the wavefield scatters rather than reflects in a random medium to reconstruct the wavefield source and thereby directly avoid storing the forward wavefield data.Numerical examples show that compared with other migration algorithms and the traditional RTM,both methods can effectively reduce wavefield data storage as well as improve data-processing efficiency while ensuring imaging accuracy,thereby providing the means for high-efficiency and highprecision imaging of fractures and caves by boreholes.展开更多
Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellia...Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellian distribution and ion streaming on the existence domain of solitons is discussed in the (M, f) space using the pseudo-potential approach. It is found that in the presence of streaming ions and for a fixed f, solitons may appear for larger values of M. This means that in the presence of ion streaming, high values of the Mach number are needed to have soliton. The DIA solitary waves profile is highly sensitive to the ion streaming speed. Their amplitude is found to decrease with an increase of the ion streaming speed. In addition, we find that the ion streaming effect may lead to the appearance of double layers. The results of this axticle should be useful in understanding the basic nonlinear features of DIA waves propagating in space dusty plasmas, especially those including a relative motion between species, such as comet tails and solar wind streams, etc.展开更多
基金supported by CNPC scientific research and technology development projects(No.2016A-3605)
文摘In this paper,wavefield storage optimization strategies are discussed with respect to reverse-time migration(RTM)imaging in reflection-acoustic logging,considering the problem of massive wavefield data storage in RTM itself.In doing so,two optimization methods are proposed and implemented to avoid wavefield storage.Firstly,the RTM based on the excitation-amplitude imaging condition uses the excitation time to judge the imaging time,and accordingly,we only need to store a small part of wavefield,such as the wavefield data of dozens of time points,the instances prove that they can even be imaged by only two time points.The traditional RTM usually needs to store the wavefield data of thousands of time points,compared with which the data storage can be reduced by tens or even thousands of times.Secondly,the RTM based on the random boundary uses the idea that the wavefield scatters rather than reflects in a random medium to reconstruct the wavefield source and thereby directly avoid storing the forward wavefield data.Numerical examples show that compared with other migration algorithms and the traditional RTM,both methods can effectively reduce wavefield data storage as well as improve data-processing efficiency while ensuring imaging accuracy,thereby providing the means for high-efficiency and highprecision imaging of fractures and caves by boreholes.
文摘Large amplitude dust ion acoustic (DIA) solitons as well as double layers (DLs) are studied in a dusty plasma having a high-energy-tail electron distribution. The influence of electron deviation from the Maxwellian distribution and ion streaming on the existence domain of solitons is discussed in the (M, f) space using the pseudo-potential approach. It is found that in the presence of streaming ions and for a fixed f, solitons may appear for larger values of M. This means that in the presence of ion streaming, high values of the Mach number are needed to have soliton. The DIA solitary waves profile is highly sensitive to the ion streaming speed. Their amplitude is found to decrease with an increase of the ion streaming speed. In addition, we find that the ion streaming effect may lead to the appearance of double layers. The results of this axticle should be useful in understanding the basic nonlinear features of DIA waves propagating in space dusty plasmas, especially those including a relative motion between species, such as comet tails and solar wind streams, etc.