A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60...A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60, 70 and 80 km/h respectively, the annoyance of the vehicle noises was evaluated in the testing room using paired comparison method, and the sound quality metrics and subjective annoyance were then distilled. Loudness, sharpness, roughness, periodicity and impulsiveness were selected for each of the vehicle noises. By correlation analysis method, it can be found that loudness has a higher correlation (0.91) with annoyance than other parameters. Meanwhile, sharpness, periodicity, roughness and impulsiveness have correlation with subjective perception with correlation coefficients being 0.84, -0.82, 0.62 and 0.87, respectively. The result of multiple regression analysis shows that calculated annoyance obtained by the regression equation can explain the perceptual annoyance and the regressed evaluation model is feasible to evaluate the sound quality of vehicle.展开更多
Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the ampli...Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.展开更多
Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the...Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.展开更多
In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect...In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect the area north of the Yangtze River since 1949, in the Yellow sea in 2012. The data show that the temperature of the whole water column increases dramati- cally except the sea surface layer after the passage of Damrey while the salinity decreases obviously. The thermocline deepens and weakens, which leads to a change of internal wave activity. The transmission losses (TL) of the two experiments show that the environment change induced by typhoon can increase the TL as large as 8 dB at a distance of 9.2 km and depth of 15 m. The scintillation index (SI) of the sound intensity is simulated to estimate the change of the effect of internal wave activity on acoustic field showing that the SI decreases to a half after the typhoon's passage. The normal mode structures of the two experiments are also significanOy different due to the thermocline changes. In addition, the signal arrives earlier after the ty- phoon's passage due to the water temperature increase.展开更多
Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which i...Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.展开更多
基金Supported by Province and University Cooperation Fund of Yunnan Province (No. 2003HBBAA02A049).
文摘A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60, 70 and 80 km/h respectively, the annoyance of the vehicle noises was evaluated in the testing room using paired comparison method, and the sound quality metrics and subjective annoyance were then distilled. Loudness, sharpness, roughness, periodicity and impulsiveness were selected for each of the vehicle noises. By correlation analysis method, it can be found that loudness has a higher correlation (0.91) with annoyance than other parameters. Meanwhile, sharpness, periodicity, roughness and impulsiveness have correlation with subjective perception with correlation coefficients being 0.84, -0.82, 0.62 and 0.87, respectively. The result of multiple regression analysis shows that calculated annoyance obtained by the regression equation can explain the perceptual annoyance and the regressed evaluation model is feasible to evaluate the sound quality of vehicle.
基金Supported by the National Natural Science Foundation of China under Grant No.50909028
文摘Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.
基金Jointly funded by the Natural Science Foundation of China(40774018)the Seismic Scientific and Technological Spark Project,China Earthquake Administration(XH13009Y)the Earthquake Research Foundation,Earthquake Administration of Anhui Province(20120702)
文摘Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.
基金supported by the National Natural Science Foundation of China(Grant Nos.U140640440806015)
文摘In order to investigate the environment and acoustic filed change induced by typhoon in shallow sea, we conducted two ex- periments just before and after the passage of typhoon Damrey, which is the strongest to affect the area north of the Yangtze River since 1949, in the Yellow sea in 2012. The data show that the temperature of the whole water column increases dramati- cally except the sea surface layer after the passage of Damrey while the salinity decreases obviously. The thermocline deepens and weakens, which leads to a change of internal wave activity. The transmission losses (TL) of the two experiments show that the environment change induced by typhoon can increase the TL as large as 8 dB at a distance of 9.2 km and depth of 15 m. The scintillation index (SI) of the sound intensity is simulated to estimate the change of the effect of internal wave activity on acoustic field showing that the SI decreases to a half after the typhoon's passage. The normal mode structures of the two experiments are also significanOy different due to the thermocline changes. In addition, the signal arrives earlier after the ty- phoon's passage due to the water temperature increase.
基金supported by the National Natural Science Foundation of China(Grant Nos.11321062,91016008 and 91216107)
文摘Thermal and acoustic environments pose severe challenges to find optimal design that exhibits ideal acoustic characteristics the structural design of hypersonic vehicles. One of them is to in a frequency band, which is discussed in this paper through topology optimization aiming at resonance sound radiation in thermal environments. The sound radiation at resonance fre- quencies is the main component of response, minimization on which is likely to provide a satisfactory design. A bi-material plate subjected to uniform temperature rise and excited by harmonic loading is studied here. Thermal stress is first evaluated and considered as prestress in the following dynamic analysis; radiated sound power is then calculated through Rayleigh inte- gral. Sensitivity analysis is carried out through adjoint method considering the complicated relationship between stress-induced geometric stiffness and design variables. As the resonance frequency is constantly changing during the optimization, its sensi- tivity should be considered. It is also noticed that mode switching may occur, so mode tracking technique is employed in this work. Some numerical examples are finally discussed.