针对无人机测控应用设计了一种S波段窄带带通体声波(BAW)滤波器,其技术指标为:中心频率2.46 GHz,带宽41 MHz,带内插损大于-3 d B,带内纹波小于1 d B,带外抑制小于-40 d B@2.385 GHz和2.506 GHz。采用Mason模型设计了BAW滤波器中各薄膜...针对无人机测控应用设计了一种S波段窄带带通体声波(BAW)滤波器,其技术指标为:中心频率2.46 GHz,带宽41 MHz,带内插损大于-3 d B,带内纹波小于1 d B,带外抑制小于-40 d B@2.385 GHz和2.506 GHz。采用Mason模型设计了BAW滤波器中各薄膜体声波谐振器(FBAR)的叠层结构;使用变迹法设计了各FBAR(电极)的形状;采用一种自行开发的自动布局方法得到紧凑的BAW滤波器布局;建立了BAW滤波器的声-电磁协同仿真模型,通过这种高保真的多物理场仿真方法对设计结果进行了性能验证。该设计流程是通用的,并且有两个特点:采用声-电磁协同仿真方法对设计阶段的BAW滤波器进行最终性能检验,可以及早发现并拒绝1D Mason模型过于乐观的设计;滤波器布局设计中采用了一种新的自动化布局方法,大大简化了在此阶段的反复尝试工作,也为声-电磁协同仿真模型输出了必需的面内结构信息。展开更多
文摘针对无人机测控应用设计了一种S波段窄带带通体声波(BAW)滤波器,其技术指标为:中心频率2.46 GHz,带宽41 MHz,带内插损大于-3 d B,带内纹波小于1 d B,带外抑制小于-40 d B@2.385 GHz和2.506 GHz。采用Mason模型设计了BAW滤波器中各薄膜体声波谐振器(FBAR)的叠层结构;使用变迹法设计了各FBAR(电极)的形状;采用一种自行开发的自动布局方法得到紧凑的BAW滤波器布局;建立了BAW滤波器的声-电磁协同仿真模型,通过这种高保真的多物理场仿真方法对设计结果进行了性能验证。该设计流程是通用的,并且有两个特点:采用声-电磁协同仿真方法对设计阶段的BAW滤波器进行最终性能检验,可以及早发现并拒绝1D Mason模型过于乐观的设计;滤波器布局设计中采用了一种新的自动化布局方法,大大简化了在此阶段的反复尝试工作,也为声-电磁协同仿真模型输出了必需的面内结构信息。