Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-...Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks.展开更多
A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical n...A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical non-equilibrium reactions encounters the stiffness problem, thus taking huge CPU time. Based on the domain decomposition method, a high efficient automatic domain decomposer for three-dimensional hybrid meshes is developed, and then implemented to the numerical simulation of hypersonic flows. Control equations are multicomponent N-S equations, and spatially discretized scheme is used by a cell-centered finite volume algorithm with a five-stage Runge-Kutta time step. The chemical kinetic model is a seven species model with weak ionization. A point-implicit method is used to solve the chemical source term. Numerical results on PC-Cluster are verified on a bi-ellipse model compared with references.展开更多
Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield netwo...Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield network,this paper proposes a new chaotic annealing neural network (CANN) for global optimization of continuous constrained non linear programming.It is easy to implement,conceptually simple,and generally applicable.Numerical experiments on severe test functions manifest that CANN is efficient and reliable to search for global optimum and outperforms the existing genetic algorithm GAMAS for the same purpose.展开更多
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia...Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect posit...Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.展开更多
To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different typ...To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different types and proportions of data noise are added to two reference data sets, Cifar-10 and Cifar-100. Then, this data containing noise is used to train deep convolutional models and classify the validation data set. The experimental results show that the noise in the data set has obvious adverse effects on deep convolutional network classification models. The adverse effects of random noise are small, but the cross-category noise among categories can significantly reduce the recognition ability of the model. Therefore, a solution is proposed to improve the quality of the data sets that are mixed into a single noise category. The model trained with a data set containing noise is used to evaluate the current training data and reclassify the categories of the anomalies to form a new data set. Repeating the above steps can greatly reduce the noise ratio, so the influence of cross-category noise can be effectively avoided.展开更多
A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as...A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.展开更多
The Triassic reservoir in the Jinan area of Tarim Oilfield consists largely of interbedded sand and shale. Because of the large overlap between sandstone and shale impedance, it is difficult to distinguish sandstone f...The Triassic reservoir in the Jinan area of Tarim Oilfield consists largely of interbedded sand and shale. Because of the large overlap between sandstone and shale impedance, it is difficult to distinguish sandstone from shale by acoustic impedance alone. Compared to acoustic impedance, elastic impedance contains more lithologic and physical information of the reservoir. Based on meticulous well-tie calibration, elastic impedance data volumes for 10°, 20°, and 30° emergence angles are obtained using pre-stack elastic impedance inversion. A non-linear statistical relationship between elastic impedance and shale content is set up by a PNN neural network. The non-linear mapping relationship is used to predict the reservoir shale content from elastic impedance, which will depict and predict the reservoir oil-bearing sands.展开更多
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金supported by the Natural Science Foundation of Henan Province(No.222300420596)China Railway Science and Technology Innovation Program Funded Project(CZ02-Special-03)Science and Technology Innovation Project funded by China Railway Tunnel Group(Tunnel Research 2021-03)。
文摘Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks.
文摘A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical non-equilibrium reactions encounters the stiffness problem, thus taking huge CPU time. Based on the domain decomposition method, a high efficient automatic domain decomposer for three-dimensional hybrid meshes is developed, and then implemented to the numerical simulation of hypersonic flows. Control equations are multicomponent N-S equations, and spatially discretized scheme is used by a cell-centered finite volume algorithm with a five-stage Runge-Kutta time step. The chemical kinetic model is a seven species model with weak ionization. A point-implicit method is used to solve the chemical source term. Numerical results on PC-Cluster are verified on a bi-ellipse model compared with references.
基金the National Natural Science Foundation of China(No.79970 0 4 2 )
文摘Chaotic neural networks have global searching ability.But their applications are generally confined to combinatorial optimization to date.By introducing chaotic noise annealing process into conventional Hopfield network,this paper proposes a new chaotic annealing neural network (CANN) for global optimization of continuous constrained non linear programming.It is easy to implement,conceptually simple,and generally applicable.Numerical experiments on severe test functions manifest that CANN is efficient and reliable to search for global optimum and outperforms the existing genetic algorithm GAMAS for the same purpose.
文摘Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金performed in the Project "The Research of Cluster Structure Based Underwater Acoustic Communication Network Topology Algorithm"supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.
基金The Science and Technology R&D Fund Project of Shenzhen(No.JCYJ2017081765149850)
文摘To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different types and proportions of data noise are added to two reference data sets, Cifar-10 and Cifar-100. Then, this data containing noise is used to train deep convolutional models and classify the validation data set. The experimental results show that the noise in the data set has obvious adverse effects on deep convolutional network classification models. The adverse effects of random noise are small, but the cross-category noise among categories can significantly reduce the recognition ability of the model. Therefore, a solution is proposed to improve the quality of the data sets that are mixed into a single noise category. The model trained with a data set containing noise is used to evaluate the current training data and reclassify the categories of the anomalies to form a new data set. Repeating the above steps can greatly reduce the noise ratio, so the influence of cross-category noise can be effectively avoided.
文摘A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.
文摘The Triassic reservoir in the Jinan area of Tarim Oilfield consists largely of interbedded sand and shale. Because of the large overlap between sandstone and shale impedance, it is difficult to distinguish sandstone from shale by acoustic impedance alone. Compared to acoustic impedance, elastic impedance contains more lithologic and physical information of the reservoir. Based on meticulous well-tie calibration, elastic impedance data volumes for 10°, 20°, and 30° emergence angles are obtained using pre-stack elastic impedance inversion. A non-linear statistical relationship between elastic impedance and shale content is set up by a PNN neural network. The non-linear mapping relationship is used to predict the reservoir shale content from elastic impedance, which will depict and predict the reservoir oil-bearing sands.