In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of th...In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.展开更多
Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small...Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small). With increase of moisture content from 3 to 14% d.b., all the main dimensions (length, width and thickness), geometric mean diameter, porosity, true density, terminal velocity and static coefficient of friction increased while bulk density and rupture force for both sunflower seed and its kernel decreased for all size categories. The results showed that the highest value of static coefficient of friction for both seed and kernel was on the rubber surface, followed by plywood, polyethylene, galvanized iron, and finally aluminium surfaces. The seeds required less compressive force to dehull when loaded under the horizontal as compared to the vertical orientation. But for kernels, the trend was the opposite. Also, the compressive forces needed to initiate rupture of sunflower seed hulls were higher (47.1-94.72 N) than those required to rupture the kernel (8.5-13.4 N) in both orientations.展开更多
A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen ...A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen chitosan/GAG implantation samples in vivo for biodegradation showed that the inplantion samples was complets biodegrable and digested afere 120 day. There was enought time to maintain cell growth,immigrating and proliferation. This biomaterials scaffold can be used for cell culture and in various tissue engineering fields.展开更多
Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding ...Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.展开更多
Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was...Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.展开更多
For the requirement of preliminary vascularization, the scaffolds for thick tissue engineering should have not only good cell affinity, but also anticoagulant ability. In this paper, enzymatically cross-linked hydroge...For the requirement of preliminary vascularization, the scaffolds for thick tissue engineering should have not only good cell affinity, but also anticoagulant ability. In this paper, enzymatically cross-linked hydrogel scaffolds based on sulfated chitosan (SCTS) were prepared. Firstly, sulfated chitosan-hydroxyphenylpionic acid (SCTS-HPA) conjugate was synthesized, and the structure of SCTS-HPA was identified by FITR and ~H NMR. And then the enzymatically cross-linked hydrogels were pre- pared in presence of horseradish peroxidase (HRP) and hydrogen peroxide (H202). The gelation time, mechanical property, morphology and cytotoxicity to human umbilical vein endothelial cells (HUVECs) of the hydrogel were evaluated in vitro, the tissue compatibility of SCTS-HPA scaffold was studied in vivo. The results showed that the gelation time, mechanical property, morphology of the dehydrated hydrogel could be controlled by the the concentration of HRP and H202. The cytotoxicity test showed that the hydrogel extracts have no cytotoxicity to HUVECs. The in vivo assay indicated that SCTS-HPA scaffold have good tissue compatibility with no thrombus formation. All these results indicated that the SCTS-HPA scaffold could be used as a thick tissue engineering scaffold.展开更多
文摘In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.
文摘Some engineering properties of sunflower seed and its kernel, Shahroodi variety as a case study, were investigated at various moisture content levels (3-14% d.b.) for three size categories (large, medium and small). With increase of moisture content from 3 to 14% d.b., all the main dimensions (length, width and thickness), geometric mean diameter, porosity, true density, terminal velocity and static coefficient of friction increased while bulk density and rupture force for both sunflower seed and its kernel decreased for all size categories. The results showed that the highest value of static coefficient of friction for both seed and kernel was on the rubber surface, followed by plywood, polyethylene, galvanized iron, and finally aluminium surfaces. The seeds required less compressive force to dehull when loaded under the horizontal as compared to the vertical orientation. But for kernels, the trend was the opposite. Also, the compressive forces needed to initiate rupture of sunflower seed hulls were higher (47.1-94.72 N) than those required to rupture the kernel (8.5-13.4 N) in both orientations.
文摘A novel biomaterial scaffold was created from collagen chitosan/GAG. Its tensile strength was 8.6MPa(wet state)and degree of swelling water was 60%~75% with higer ultimate elongation 300%. Rabbit corneas of collagen chitosan/GAG implantation samples in vivo for biodegradation showed that the inplantion samples was complets biodegrable and digested afere 120 day. There was enought time to maintain cell growth,immigrating and proliferation. This biomaterials scaffold can be used for cell culture and in various tissue engineering fields.
文摘Hydrocyclone is widely used in closed-circuit grinding process. However, in the first classification operation of coarse particles with high pulp density, the shortcomings of traditional cyclone are that the grinding cycle load is much high, the apex of cyclone is easily to be blocked and classification efficiency is less. Specifically, the problems of traditional cyclone used in grinding process are as follows: (1) Mill utilization factor is low and its handling capacity is small; (2) Coarse particles mixing in cyclone overflow affects the following separation process and fine particles mixing in underflow causes over-grinding, which affects the total recovery rate of valuable minerals; (3) High grinding cycle load leads to large amount of high-density slurry pumping, which causes high energy consumption and severe wear of cyclones, pipelines and pumps. The applications of new type pre-classification hydrocyclone with centrifugal volute in the first classification process of iron mine mill are introduced in the paper. Pulp particles fed in the centrifugal volute are arranged in advance, so that coarse particles can be far away from the overflow pipe, which can reduce the short circuit current to avoid coarse particles entering overflow and improve classification efficiency and accuracy of cyclone. The strong points of the new cyclone in the coarse classification operation are as follows: (1) Finer overflow and less fine particles mixing in underflow improves classification efficiency more than 10%; (2) Lower ball mill load cycle improves ball capacity more than 10%; (3) Grinding energy consumption reduces by more than 20% and cyclone feed pump reduces energy consumption by more than 12%. In short, new type pre-classification cyclone with centrifugal volute solves the problems of fine particles mixing in underflow, high grinding cycle load and less classification efficiency in the coarse classification operation. Therefore, it has broad application prospects in ferrous metal and non-ferrous metal ore dressing plant.
基金supported by the National Natural Science Foundation of China(Nos.81171472,81201407,and 81071270)the Innovation Team Project of Sichuan Provincial Education Department(No.13TD0030)+1 种基金the Major Transformation Cultivation Project of Sichuan Provincial Education Department(No.15CZ0021)the Science and Technology Project of Nanchong City(No.14A0021),China
文摘Objective: In our previous work, we prepared a type of chitosan hydrogel with excellent biocompatibility. In this study, tissue-engineered cartilage constructed with this chitosan hydrogel and costal chondrocytes was used to repair the articular cartilage defects. Methods: Chitosan hydrogels were prepared with a crosslinker formed by combining 1,6-diisocyanatohexane and polyethylene glycol. Chitosan hydrogel scaffold was seeded with rabbit chondrocytes that had been cultured for one week in vitro to form the preliminary tissue-engineered cartilage. This preliminary tissue-engineered cartilage was then transplanted into the defective rabbit articular cartilage. There were three treatment groups: the experimental group received preliminary tissue-engineered cartilage; the blank group received pure chitosan hydrogels; and, the control group had received no implantation. The knee joints were harvested at predetermined time. The repaired cartilage was analyzed through gross morphology, histologically and immunohistochemically. The repairs were scored according to the international cartilage repair society (ICRS) standard. Results: The gross morphology results suggested that the defects were repaired completely in the experimental group after twelve weeks. The regenerated tissue connected closely with subchondral bone and the boundary with normal tissue was fuzzy. The cartilage lacuna in the regenerated tissue was similar to normal cartilage lacuna. The results of ICRS gross and histological grading showed that there were significant differences among the three groups (P〈0.05). Conclusions: Chondrocytes implanted in the scaffold can adhere, proliferate, and secrete extracellular matrix. The novel tissue-engineered cartilage constructed in our research can completely repair the structure of damaged articular cartilage.
基金supported by the National Basic Research Program of China(973 Project,2011CB606202)the National Natural Science Foundation of China(51273095)
文摘For the requirement of preliminary vascularization, the scaffolds for thick tissue engineering should have not only good cell affinity, but also anticoagulant ability. In this paper, enzymatically cross-linked hydrogel scaffolds based on sulfated chitosan (SCTS) were prepared. Firstly, sulfated chitosan-hydroxyphenylpionic acid (SCTS-HPA) conjugate was synthesized, and the structure of SCTS-HPA was identified by FITR and ~H NMR. And then the enzymatically cross-linked hydrogels were pre- pared in presence of horseradish peroxidase (HRP) and hydrogen peroxide (H202). The gelation time, mechanical property, morphology and cytotoxicity to human umbilical vein endothelial cells (HUVECs) of the hydrogel were evaluated in vitro, the tissue compatibility of SCTS-HPA scaffold was studied in vivo. The results showed that the gelation time, mechanical property, morphology of the dehydrated hydrogel could be controlled by the the concentration of HRP and H202. The cytotoxicity test showed that the hydrogel extracts have no cytotoxicity to HUVECs. The in vivo assay indicated that SCTS-HPA scaffold have good tissue compatibility with no thrombus formation. All these results indicated that the SCTS-HPA scaffold could be used as a thick tissue engineering scaffold.