期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
地幔热导率的选取对动力学数值模拟的影响——以岩石圈张裂过程为例 被引量:1
1
作者 谌永强 施小斌 +2 位作者 廖杰 许鹤华 任自强 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第5期1998-2012,共15页
目前存在有多种地幔热导率模型,不同模型在数值和随温压变化的特征上有明显的差异.为探究不同热导率模型对动力学数值模拟结果的影响,本文对不同模型下的岩石圈张裂过程进行模拟研究,探讨地幔热导率对岩石圈热传输、变形和熔融过程的影... 目前存在有多种地幔热导率模型,不同模型在数值和随温压变化的特征上有明显的差异.为探究不同热导率模型对动力学数值模拟结果的影响,本文对不同模型下的岩石圈张裂过程进行模拟研究,探讨地幔热导率对岩石圈热传输、变形和熔融过程的影响及其作用机理.结果显示,不同热导率模型下,岩石圈的变形和熔融特征表现出明显差异.高热导率模型下,岩石圈破裂较晚,形成陆缘较为宽阔,地壳熔融强烈而地幔熔融较弱;低热导率模型下,岩石圈破裂较早,形成陆缘较为狭窄,地幔熔融强烈而地壳熔融较弱.这种差异源于不同地幔热导率下岩石圈和地幔热状态的变化及相应力学性质的改变.高热导率下,热传导的增温效应显著,岩石圈呈现较热的状态,其强度整体较低,壳幔耦合减弱;而低热导率下,热对流的增温效应显著,岩石圈呈较冷的状态,其强度整体较高,壳幔耦合增强.基于模拟结果,本文认为地幔热导率的选取对动力学模拟的结果有着较为显著的影响,相对于随温压的变化,热导率数值的差异对动力学数值模拟的结果影响更大,尤其是对于地幔熔融过程的影响. 展开更多
关键词 热导率 岩石圈张裂 动力学数值模拟 岩石圈强度 壳幔熔融
下载PDF
Continental crust formation at arcs, the arclogite ‘‘delamination''cycle, and one origin for fertile melting anomalies in the mantle 被引量:17
2
作者 Cin-Ty A.Lee Don L.Anderson 《Science Bulletin》 SCIE EI CAS CSCD 2015年第13期1141-1156,共16页
The total magmatic output in modern arcs,where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has a... The total magmatic output in modern arcs,where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the parental basalt differentiates into a mafic garnet pyroxenitic residue/cumulate(‘‘arclogite'') and a complementary silicic melt, the former foundering or delaminating into the mantle due to its high densities and the latter remaining as the crust.Using the Sierra Nevada batholith in California as a case study, the composition of mature continental arc crust is shown in part to be the product of a cyclic process beginning with the growth of an arclogite layer followed by delamination of this layer and post-delamination basaltic underplating/recharge into what remains of the continental crust.A model is presented, wherein continuous arc magmatism and production of arclogites in continental arcs are periodically punctuated by a delamination event and an associated magmatic pulse every *10–30 My. The recycling flux of arclogites is estimated to be *5 %–20 % that of oceanic crust recycling by subduction. Delaminated arclogites have the necessary trace-element compositions to yield time-integrated isotopic compositions similar to those inferred toexist as reservoirs in the mantle. Because of their low melting temperatures, such pyroxenites may be preferentially melted, possibly forming a component of some hotspot magmas. 展开更多
关键词 PYROXENITE ECLOGITE DELAMINATION CUMULATE Continental crust
原文传递
Partial melting and crust-mantle interaction in subduction channels:Constraints from experimental petrology 被引量:4
3
作者 ZHANG JunFeng WANG ChunGuang +2 位作者 XU HaiJin WANG Chao XU WenLiang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第10期1700-1712,共13页
It is proposed in the subduction channel model that the plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.The significant difference in composition... It is proposed in the subduction channel model that the plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.The significant difference in composition and nature between continental lithosphere and oceanic lithosphere inevitably leads to variations in deep physical and chemical processes as well as crust-mantle interaction products in these two settings.Many studies of experimental petrology have provided constraints on the potential partial melting and crust-mantle interaction in oceanic subduction channels for silicate and carbonate rocks.The partial melts of mafic and felsic compositions are adakitic or non-adakitic granitic melts depending on melting pressure or depth.A trivial amount of CO2 can lower significantly the melting temperature of peridotites and lead to pronounced enrichment of incompatible elements in carbonate melt.The silica saturated or unsaturated melts can react with mantle-wedge peridotites in subduction channels to generate complex products.However,the existing experiments are mostly dedicated to island arc settings above oceanic subduction zones rather than dehydration melting above continental subduction zones.It is crucial to conduct high pressure and high temperature experiments to investigate all possible reactions between peridotites and crustal materials and their derivatives under the conditions responsible for the slab-mantle interface in continental subduction channels.Experimental results,combined with natural observations,are possible to elucidate the processes of metamorphic dehydration,partial melting and mantle metasomatism in continental subduction channels. 展开更多
关键词 subduction channel partial melting crust-mantle interaction high P-T experiments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部