Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD...Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.展开更多
The biological characteristics of crustacean spermatozoa is important for the artificial reproduction and genetic breeding. With reference to the latest studies and related materials, this paper reviewed the research ...The biological characteristics of crustacean spermatozoa is important for the artificial reproduction and genetic breeding. With reference to the latest studies and related materials, this paper reviewed the research progress in the biological characteristics of crustacean spermatozoa, such as morphological structure of sperm, spermatogenesis, sperm viability, preservation in vitro and acrosome reaction et al. The prospects of the research field have also been anticipated.展开更多
To better guide the coating process of rectangular tiles on a ship hull, a computerized three-dimensional design method is proposed. Research was done on a tile generating algorithm, tile laying design flow, tiles gap...To better guide the coating process of rectangular tiles on a ship hull, a computerized three-dimensional design method is proposed. Research was done on a tile generating algorithm, tile laying design flow, tiles gap examination algorithm, and tiles slight displacement, as well as cutting and rotating algorithms.A three-dimensional design system was developed using an MDT platform. The application of this system indicates that using the design arrangement to coat tiles on a ship’s hull can result in enhanced coating quality.展开更多
The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter...The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.展开更多
This paper aims to achieve analysis and experiment resuhs that relate to mechanics capability and structural parameter of a special saddle shell of revolution. Theoretically speaking, the saddle shell of revolution co...This paper aims to achieve analysis and experiment resuhs that relate to mechanics capability and structural parameter of a special saddle shell of revolution. Theoretically speaking, the saddle shell of revolution consists of a toroidal shell and a spherical shell. The shells simultaneous equations can be solved with harmonious terms. Where, the fundamental equations can be solved by as-ymptotic exponential perturbation method. The equations of special solution can be solved by Hovozhilovs special solution. This new idea is from a study of some existing solutions of the toroidal shell. The resuhs have been proved by compared with some experimental results. The experiments aims to study the effect caused by change of material parameter, or by change of different geometric dimensions of the saddle shell, which include the change of thickness, the change of radius of shell, and the change of ribs. Finally, the accepted product of the saddle shell were reinforced by a toroidal rib has been submitted.展开更多
For practical engineering purpose, a new flat shell element baptized (ACM_Q4SBE1) is presented in this paper. The formulated element can be used for the analysis of thin shell structures; no matter how the geometric...For practical engineering purpose, a new flat shell element baptized (ACM_Q4SBE1) is presented in this paper. The formulated element can be used for the analysis of thin shell structures; no matter how the geometrical shape might be. Tests on standard problems have been examined. Since, the analysis of thin shell structures has generally been purely carried out on a theoretical basis; it is of importance to present some experimental results of an elliptical paraboloid under uniformly distributed load pressure. The results obtained from both numerical and experimental work are presented.展开更多
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science and Technology Cooperation Program of China
文摘Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.
基金supported by the Jiangsu Province Science and Technology Development Project (Grant No. BN2010026)
文摘The biological characteristics of crustacean spermatozoa is important for the artificial reproduction and genetic breeding. With reference to the latest studies and related materials, this paper reviewed the research progress in the biological characteristics of crustacean spermatozoa, such as morphological structure of sperm, spermatogenesis, sperm viability, preservation in vitro and acrosome reaction et al. The prospects of the research field have also been anticipated.
文摘To better guide the coating process of rectangular tiles on a ship hull, a computerized three-dimensional design method is proposed. Research was done on a tile generating algorithm, tile laying design flow, tiles gap examination algorithm, and tiles slight displacement, as well as cutting and rotating algorithms.A three-dimensional design system was developed using an MDT platform. The application of this system indicates that using the design arrangement to coat tiles on a ship’s hull can result in enhanced coating quality.
基金ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21074096 and No.31340026) and the Natural Science Foundation of Zhejiang Province (No.Y4090174, No.LY12A04004, No.LQ12E01003 and No.Z13F020019). Xiang-hong Wang thanks the funding from the Advanced Talent Program of Wenzhou.
文摘The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.
文摘This paper aims to achieve analysis and experiment resuhs that relate to mechanics capability and structural parameter of a special saddle shell of revolution. Theoretically speaking, the saddle shell of revolution consists of a toroidal shell and a spherical shell. The shells simultaneous equations can be solved with harmonious terms. Where, the fundamental equations can be solved by as-ymptotic exponential perturbation method. The equations of special solution can be solved by Hovozhilovs special solution. This new idea is from a study of some existing solutions of the toroidal shell. The resuhs have been proved by compared with some experimental results. The experiments aims to study the effect caused by change of material parameter, or by change of different geometric dimensions of the saddle shell, which include the change of thickness, the change of radius of shell, and the change of ribs. Finally, the accepted product of the saddle shell were reinforced by a toroidal rib has been submitted.
文摘For practical engineering purpose, a new flat shell element baptized (ACM_Q4SBE1) is presented in this paper. The formulated element can be used for the analysis of thin shell structures; no matter how the geometrical shape might be. Tests on standard problems have been examined. Since, the analysis of thin shell structures has generally been purely carried out on a theoretical basis; it is of importance to present some experimental results of an elliptical paraboloid under uniformly distributed load pressure. The results obtained from both numerical and experimental work are presented.