The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the ...The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the length of the cylindrical shell.From the viewpoint of the shell theory,they belong to the mid-long cylindrical shell category.To solve mechanical problems on this kind of structure,especially a cracked cylindrical shell,analysis based on shell theory is necessary.At present the generally used solving system for the mid-long cylindrical shell is too complicated,difficult to solve,and inapplicable to engineering.This paper introduced the Sanders' mid-long cylindrical shell theory which reduces the difficulty of the solution process,and will be suitable for solving problems with complicated boundary conditions.On this basis,the engineering applications of this theory were discussed in conjunction with the problem of a mid-long cylindrical shell having a circumferential crack.The solution process is simple,and the closed form solution can usually be found.In practical engineering applications,it gives satisfactory precision.展开更多
The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. ...The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.(50579023).
文摘The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the length of the cylindrical shell.From the viewpoint of the shell theory,they belong to the mid-long cylindrical shell category.To solve mechanical problems on this kind of structure,especially a cracked cylindrical shell,analysis based on shell theory is necessary.At present the generally used solving system for the mid-long cylindrical shell is too complicated,difficult to solve,and inapplicable to engineering.This paper introduced the Sanders' mid-long cylindrical shell theory which reduces the difficulty of the solution process,and will be suitable for solving problems with complicated boundary conditions.On this basis,the engineering applications of this theory were discussed in conjunction with the problem of a mid-long cylindrical shell having a circumferential crack.The solution process is simple,and the closed form solution can usually be found.In practical engineering applications,it gives satisfactory precision.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41574074, 41174085, 41430319)the Innovation Team Project of Chinese Academy of Sciences (Grant No. KZZD-EW-TZ-19)the Strategic Pilot Technology of Chinese Academy of Sciences (Grant No. XDA1103010102)
文摘The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.