Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups.They have showed significant potentials of remo...Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups.They have showed significant potentials of removing metal ions,dyes and proteins from various media.Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures.The aims of this review were to summarize the important information of the bioactivities of chitosan,highlight the various preparation methods of chitosan-based active biosorbents,and outline its potential applications in the adsorption of heavy metal ions,dyes and proteins from wastewater and aqueous solutions.展开更多
Hydroxypropyl chitosan(HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical ...Hydroxypropyl chitosan(HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan(FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 k Da. Moreover, our data indicated that there was an obvious degradation process occurred in liver(< 10 k Da at 24 h). In summary, HP-chitosan has excellent bioavailability and biodegradability, suggesting the potential applications of hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.展开更多
Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wista...Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.展开更多
In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performa...In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fimgi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifizngal activity against G. zeae, whose antifimgal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifimgal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.展开更多
基金financially supported by Ocean Public Welfare Scientific Research Special Appropriation Project(201005020)Fundamental Research Funds for the Central Universities and Program for Changjiang Scholars and Innovative Research Team in University(IRT1188)
文摘Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups.They have showed significant potentials of removing metal ions,dyes and proteins from various media.Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures.The aims of this review were to summarize the important information of the bioactivities of chitosan,highlight the various preparation methods of chitosan-based active biosorbents,and outline its potential applications in the adsorption of heavy metal ions,dyes and proteins from wastewater and aqueous solutions.
基金financially supported by National High Technology Research and Development Program of China(863 Program,Grant No.2007AA091603)
文摘Hydroxypropyl chitosan(HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan(FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 k Da. Moreover, our data indicated that there was an obvious degradation process occurred in liver(< 10 k Da at 24 h). In summary, HP-chitosan has excellent bioavailability and biodegradability, suggesting the potential applications of hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.
基金supported by the National High Technology Research and Development Program of China (863 Program 2006AA090401)
文摘Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.
基金Supported by the National Natural Science Foundation of China(No.41306071)the Public Science and Technology Research Funds Projects of Ocean(No.201305016-2)the Science and Technology Development Program of Shandong Province(No.2012GHY11530)
文摘In this study, three hymexazol-linked chitosan derivatives (HML-CS) were synthesized and their structures confirmed by Fourier transform infrared and elemental analysis. Linkage ratios were measured by high performance liquid chromatography. The derivatives' antifungal activity against the plant pathogenic fimgi Rhizoctonia solani CGMCC 3.28 and Gibberella zeae CGMCC 3.42 were investigated at concentrations of 100, 200, and 400 mg/L. These HML-CS derivatives exhibited stronger antifungal activity than CS alone. HML-CS-1 showed the best antifizngal activity against G. zeae, whose antifimgal index was 65.9% at 400 mg/L, and also showed the best antifungal activity against R. solani, whose antifimgal index was 52.7% at 400 mg/L. This conjugation of CS and HML suggested the presence of synergistic effects between the moieties and indicated that these derivatives possessed great potential as novel fungicides and require further research for the development of applications in crop protection.