The large-scale computations are often performed in science and engineering areas such as numerical weather forecasting, astrophysics, energy resources exploration, nuclear weapon design, and plasma fusion research et...The large-scale computations are often performed in science and engineering areas such as numerical weather forecasting, astrophysics, energy resources exploration, nuclear weapon design, and plasma fusion research etc. Many applications in these areas need super computing power. The traditional mode of sequential processing cannot meet the demands of those computations, thus, parallel processing(PP) is the main way of high performance computing (HPC) now.展开更多
We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stati...We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stations from the IGS network spanning 96 d is processed.Results show that the IFCBs of PRN25 and PRN01 exhibit periodical signal of one orbit revolution with a magnitude up to 18 cm.The periodical variation of the IFCBs is modeled by a sinusoidal function of the included angle between the sun,earth and the satellite.The presented model enables a consistent use of L1/L2 clock products in L1/L5-based positioning.The algorithm is incorporated into the MGPSS software at SHAO(Shanghai Astronomical Observatory,Chinese Academy of Sciences) and is used to monitor the IFCB variation in near real-time.展开更多
文摘The large-scale computations are often performed in science and engineering areas such as numerical weather forecasting, astrophysics, energy resources exploration, nuclear weapon design, and plasma fusion research etc. Many applications in these areas need super computing power. The traditional mode of sequential processing cannot meet the demands of those computations, thus, parallel processing(PP) is the main way of high performance computing (HPC) now.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41204034,41174023 and 11173049)the Opening Project of Shanghai Key Laboratory of Space Navigation and Position Techniques (Grant No. Y224 353002)
文摘We present two efficient approaches,namely the epoch-differenced(ED) and satellite-and epoch-differenced(SDED) approaches,for the estimation of IFCBs of the two Block IIF satellites.For the analysis,data from 18 stations from the IGS network spanning 96 d is processed.Results show that the IFCBs of PRN25 and PRN01 exhibit periodical signal of one orbit revolution with a magnitude up to 18 cm.The periodical variation of the IFCBs is modeled by a sinusoidal function of the included angle between the sun,earth and the satellite.The presented model enables a consistent use of L1/L2 clock products in L1/L5-based positioning.The algorithm is incorporated into the MGPSS software at SHAO(Shanghai Astronomical Observatory,Chinese Academy of Sciences) and is used to monitor the IFCB variation in near real-time.