The load compensation equipment for anchor cable named low retraction prestressed anchorage system with twice-tension(referred to as twice-tension anchorage system) is proposed in the paper. Calculation results of loo...The load compensation equipment for anchor cable named low retraction prestressed anchorage system with twice-tension(referred to as twice-tension anchorage system) is proposed in the paper. Calculation results of loop anchorage prestressing loss(PL) values of inner lining(IL)in Yellow River-crossing tunnel under two anchorage systems,including twice- tension anchorage system and HM(Chinese transliteration is huanmao)anchorage system,are introduced. The software ANSYS is selected to realize the three-dimensional(3D) finite element modeling to accomplish simulation and calculation works under the two anchorage systems,respectively. Stress processes of IL under the two working conditions,of which one is completed cable tensioning(CCT) and the other is water in the tunnel with the designed water pressure(DWP),are contrasted and analyzed. Impacts of prestressing forces of anchor cables on structural safety under the two anchorage systems are contrasted. The calculation results show that the twice-tension anchorage system can reduce PL effectively and then increase prestresses of wall concrete(WC). Meanwhile,the anchorage system has the advantages of improving security and stability of tunnel structure,reducing project costs and saving steel consumption. The research work is available to related design and construction of anchor cable,and is worthy of promotion and application.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
基金National Natural Science Foundation of China(No.51079107)Fundamental Research Funds for the Central Universities(No.5082022)
文摘The load compensation equipment for anchor cable named low retraction prestressed anchorage system with twice-tension(referred to as twice-tension anchorage system) is proposed in the paper. Calculation results of loop anchorage prestressing loss(PL) values of inner lining(IL)in Yellow River-crossing tunnel under two anchorage systems,including twice- tension anchorage system and HM(Chinese transliteration is huanmao)anchorage system,are introduced. The software ANSYS is selected to realize the three-dimensional(3D) finite element modeling to accomplish simulation and calculation works under the two anchorage systems,respectively. Stress processes of IL under the two working conditions,of which one is completed cable tensioning(CCT) and the other is water in the tunnel with the designed water pressure(DWP),are contrasted and analyzed. Impacts of prestressing forces of anchor cables on structural safety under the two anchorage systems are contrasted. The calculation results show that the twice-tension anchorage system can reduce PL effectively and then increase prestresses of wall concrete(WC). Meanwhile,the anchorage system has the advantages of improving security and stability of tunnel structure,reducing project costs and saving steel consumption. The research work is available to related design and construction of anchor cable,and is worthy of promotion and application.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.