期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
5G基站多场景备电电池共建解决方案研究 被引量:1
1
作者 李静 陈逵林 《电信快报》 2023年第7期38-42,共5页
介绍5G基站三种主要备电电池的型号、规格、参数等,给出常规基站中备电电池选用及容量配置的原则。分析现网基站存在的四种电池配置情况及相应的问题,指出现网基站电池共用管理器存在的问题,提出新型电池共用管理器的设想,并分析具体应... 介绍5G基站三种主要备电电池的型号、规格、参数等,给出常规基站中备电电池选用及容量配置的原则。分析现网基站存在的四种电池配置情况及相应的问题,指出现网基站电池共用管理器存在的问题,提出新型电池共用管理器的设想,并分析具体应用的三种配置方案,总结基站备电电池共建的相关建议。研究认为,应用新型电池共用管理器可有效解决目前现网基站电池混用、电池充放电管理、电池信号监控等诸多问题。 展开更多
关键词 备电电池 多场景 共建 新型电池共用管理器
下载PDF
A review on the cooling of energy conversion and storage systems using thermoelectric modules
2
作者 Amirreza IJADI Mehran Rajabi ZARGARABADI +1 位作者 Saman RASHIDI Amir Mohammad JADIDI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1998-2026,共29页
Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversio... Exploitation of sustainable energy sources requires the use of unique conversion and storage systems,such as solar panels,batteries,fuel cells,and electronic equipment.Thermal load management of these energy conversion and storage systems is one of their challenges and concerns.In this article,the thermal management of these systems using thermoelectric modules is reviewed.The results show that by choosing the right option to remove heat from the hot side of the thermoelectric modules,it will be a suitable local cooling,and the thermoelectric modules increase the power and lifespan of the system by reducing the spot temperature.Thermoelectric modules were effective in reducing panel temperature.They increase the time to reach a temperature above 50℃ in batteries by 3 to 4 times.Also,in their integration with fuel cells,they increase the power density of the fuel cell. 展开更多
关键词 COOLING PHOTOVOLTAIC lithium-ion batteries fuel cell electronic equipment thermoelectric modules
下载PDF
Preparation and Electrochemical Performances of Nickel Metal Hydride Batteries with High Specific Volume Capacity 被引量:4
3
作者 杨敏杰 南俊民 +1 位作者 侯宪鲁 李伟善 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期944-948,共5页
Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of posi... Cylindrical nickel metal hydride (Ni-MH) battery with high specific volume capacity was prepared by using the oxyhydroxide Ni(OH)2 and AB5 type hydrogen storage alloy and adjusting the designing parameters of positive and negative electrodes. The oxyhydroxide Ni(OH)2 was synthesized by oxidizing spherical β-Ni(OH)2 with chemical method. The X-ray diffraction (XRD) patterns and the Fourier transform infrared (PT-IR) spectra indicated that 7-NiOOH was formed on the oxyhydroxide Ni(OH)2 powders, and some H2O molecules were inserted into their crystal lattice spacing. The battery capacity could not be improved when the oxyhydroxide Ni(OH)2 sample was directly used as the positive active materials. However, based on the conductance and residual capacity of the oxyhydroxide Ni(OH)2 powders, AA size Ni-MH battery with 2560 mA.h capacity and 407 W·h·L^-1 specific volume energy at 0.2C was obtained by using the commercial spherical β-Ni(OH)2 and AB5-type hydrogen-storage alloy powders as the active materials when 10% mass amount of the oxyhydroxide Ni(OH)2 with 2.50 valence was added to the positive active materials and subsequently the battery designing parameters were adjusted as well. The as-prepared battery showed 70% initial capacity after 80 cycles at 0.5C. The possibility for adjusting the capacity ratio of positive and negative electrodes from 1 : 1.35 to 1 : 1.22 was demonstrated preliminarily. It is considered the as-prepared battery can meet the requirement of some special portable electrical instruments. 展开更多
关键词 oxyhydroxide Ni(OH)2 nickel metal hydride battery high capacity PREPARATION electrochemical performance
下载PDF
Recent progress of fiber-shaped batteries towards wearable application 被引量:1
4
作者 LI Yuan WANG Yi-bo +7 位作者 ZHANG Hao ZHAO Peng-cheng CHEN Long MA Jun CHEN Xi-bang LIN Zhi-hong QIU Jing-yi CAO Gao-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2837-2856,共20页
Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources.... Rapid development of portable or wearable devices, which is inspired by requirements of instant messaging,health monitoring and handling official business, urgently demands more tiny, flexible and light power sources. Fibershaped batteries explored in recent years become a prospective candidate to satisfy these demands. With 1D architecture,the fiber-shaped batteries could be adapted to various deformations and integrated into soft textile and other devices.Numerous researches have been reported and achieved huge promotion. To give an overview of fiber-shaped batteries,we summarized the development of fiber-shaped batteries in this review, and discussed the structure and materials in fiber-shaped batteries. The flexibility of batteries with the potential application of the batteries was also exhibited and showed the future perspective. Finally, challenges in this field were discussed, hoping to reveal research direction towards further development of fiber-shaped batteries. 展开更多
关键词 flexible electronic device fiber-shaped battery flexible electrodes wearable application
下载PDF
Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance 被引量:4
5
作者 ZHOU Xiao-zhong LU He-jie +2 位作者 TANG Xing-chang ZENG Ya-ping YU Xin 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1493-1502,共10页
Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/re... Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries,whereas they were commonly synthesized through time-consuming and costly processes.Here,Sb@Sb2O3/reduced graphene oxide(Sb@Sb2O3/rGO)composite was successfully synthesized by a facile one-pot chemical method at ambient temperature.Based on the XRD and TGA analysis,the mass fractions of Sb and Sb2O3 in the Sb@Sb2O3/rGO composite are ca.34.05%and 26.6%,respectively.When used as an alternative electrode for lithium ion batteries,a high reversible capacity of 790.9 mA·h/g could be delivered after 200 cycles with the capacity retention of 93.8%at a current density of 200 mA/g.And a capacity of 260 mA·h/g could be maintained even at 2000 mA/g.These excellent electrochemical properties can be attributed to its well-constructed nanostructure.The Sb and Sb2O3 particles with size of 10 nm were tightly anchored on rGO sheets through electronic coupling,which could not only alleviate the stress induced by the volume expansion,suppress the aggregation of Sb and Sb2O3 particles,but also improve the electron transfer ability during cycling. 展开更多
关键词 Sb@Sb2O3/rGO composite synthesis electrochemical performance lithium-ion batteries
下载PDF
Preparation and characterization of lithium hexafluorophosphate for lithium-ion battery electrolyte 被引量:2
6
作者 刘建文 李新海 +4 位作者 王志兴 郭华军 彭文杰 张云河 胡启阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期344-348,共5页
A promising preparation method for lithium hexafluorophosphate(LiPF6)was introduced.Phosphorus pentafluoride(PF5) was first prepared using CaF2 and P2O5 at 280℃for 3 h.LiPF6 was synthesized in acetonitrile solvent by... A promising preparation method for lithium hexafluorophosphate(LiPF6)was introduced.Phosphorus pentafluoride(PF5) was first prepared using CaF2 and P2O5 at 280℃for 3 h.LiPF6 was synthesized in acetonitrile solvent by LiF and PF5 at room temperature(20-30℃)for 4 h.The synthesized LiPF6 was characterized by infrared spectrometry and X-ray diffraction(XRD). Atomic absorption and ion chromatography results show that the purity of synthesized LiPF6 reaches 99.98%.Thermal stability of self-synthesized LiPF6 was analyzed by differential thermal analysis and thermogravimetry.The results indicate that the self-synthesized LiPF6 has higher purity,lower impurity contents and better thermal stability than the commercial LiPF6. 展开更多
关键词 lithium-ion batteries lithium hexafluorophosphate phosphorus pentafluoride ACETONITRILE
下载PDF
Operational program for proper capacity of electric bus charging station in Expo 2010
7
作者 张维戈 Shi Wei +2 位作者 Sun Bingxiang Jia Rongda Li Xiaoqiang 《High Technology Letters》 EI CAS 2013年第4期437-442,共6页
In the paper,an operational program of electric bus charging station is proposed,which is special for "The Construction Project for Expo 2010 Temporary Electric Bus Charging Station".Based on the quick-chang... In the paper,an operational program of electric bus charging station is proposed,which is special for "The Construction Project for Expo 2010 Temporary Electric Bus Charging Station".Based on the quick-change mode,a vehicle operating schedule model has been established to meet the capacity of transport.Then,according to the quantity of passengers and utilization of batteries,a calculative method of parameters,such as the number of spare batteries and bus departure rules,has been provided.Furthermore,optimal simulation software designed for operating process of the charging station has been identified incorporating actual running data from electric buses and monitoring system of the charging station,and the rationality of the design is verified in the preliminary commissioning and the official operation. 展开更多
关键词 electric bus charging station operational program simulation software
下载PDF
Hydrogen ion beam assisted preparation of metal halide electrodes for batteries
8
作者 Shehdeh Jodeh 《Journal of Chemistry and Chemical Engineering》 2009年第8期19-24,共6页
A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombardi... A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods. 展开更多
关键词 hydrides EVAPORATION FILM BATTERIES BEAM
下载PDF
Al4B2O9 nanorods-modified solid polymer electrolytes with decent integrated performance 被引量:1
9
作者 Xiqiang Guo Wenjie Peng +7 位作者 Yuqi Wu Huajun Guo Zhixing Wang Xinhai Li Yong Ke Lijue Wu Haikuo Fu Jiexi Wang 《Science China Materials》 SCIE EI CSCD 2021年第2期296-306,共11页
With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety conce... With the proliferation of energy storage and power applications, electric vehicles particularly, solid-state batteries are considered as one of the most promising strategies to address the ever-increasing safety concern and high energy demand of power devices. Here, we demonstrate the Al4B2O9 nanorods-modified poly(ethylene oxide) (PEO)-based solid polymer electrolyte (ASPE) with high ionic conductivity, wide electrochemical window, decent mechanical property and nonflammable performance. Specifically, because of the longer-range ordered Li+ transfer channels conducted by the interaction between Al4B2O9 nanorods and PEO, the optimal ASPE (ASPE-1) shows excellent ionic conductivity of 4.35×10^−1 and 3.1×10^−1 S cm^−1 at 30 and 60℃, respectively. It also has good electrochemical stability at 60℃ with a decomposition voltage of 5.1 V. Besides, the assembled LiFePO4//Li cells show good cycling performance, delivering 155 mA h g−1 after 300 cycles at 1 C under 60℃, and present excellent low temperature adaptability, retaining over 125 mA h g^−1 after 90 cycles at 0.2 C under 30℃. These results verify that the addition of Al4B2O9 nanorods can effectively promote the integrated performance of solid polymer electrolyte. 展开更多
关键词 all-solid-state lithium ion battery Al4B2O9 nanorods ionic conductivity polymer electrolyte
原文传递
Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60]fullerene dyad as a novel electron acceptor 被引量:3
10
作者 ZHANG Wen-Bin TU YingFeng +3 位作者 SUN Hao-Jan YUE Kan GONG Xiong CHENG Stephen Z. D. 《Science China Chemistry》 SCIE EI CAS 2012年第5期749-754,共6页
A polyhedral oligomeric silsesquioxane-[60]fullerene (POSS-C60) dyad was designed and used as a novel electron acceptor for bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device configuration. T... A polyhedral oligomeric silsesquioxane-[60]fullerene (POSS-C60) dyad was designed and used as a novel electron acceptor for bulk heterojunction (BHJ) polymer solar cells (PSCs) with an inverted device configuration. The studies of time-resolved photoinduced absorption of the pristine thin film of poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis (2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] (SiPCPDTBT) and the composite thin film of SiPCPDTBT:POSS-C60 indicated efficient electron transfer from SiPCPDTBT to POSS-C60 with inhibited back-transfer. BHJ PSCs made by SiPCPDTBT mixed with POSS-C60 yielded the power conversion efficiencies (PCEs) of 1.50%. Under the same operational conditions, PCEs observed from BHJ PSCs made by SiPCPDTBT mixed with [6,6]-phenyl-C61-butyric acid methyl ester were 0.92%. These results demonstrated that POSS-C60 is a potentially good electron acceptor for inverted BHJ PSCs. 展开更多
关键词 electron acceptor polyhedral oligomeric silsesquioxane FULLERENE polymer solar cells inverted device structure
原文传递
A facile grinding approach to embed red phosphorus in N,P-codoped hierarchical porous carbon for superior lithium storage 被引量:1
11
作者 Zhuzhu Du Wei Ai +4 位作者 Chenyang Yu Yujiao Gong Ruyi Chen Gengzhi Sun Wei Huang 《Science China Materials》 SCIE EI CSCD 2020年第1期55-61,共7页
Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic... Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic volume changes during charge-discharge processes. In order to tackle these issues, herein, a facile grinding method was developed to embed sub-micro-and nano-sized red P particles in N,P-codoped hierarchical porous carbon(NPHPC). Such a unique structure enables P@NPHPC long-cyclic stability(1120 mAh g^-1 after 100 cycles at 100 mA g^-1) and superior rate performance(248 mA h g^-1 at 6400 mA g^-1). It is believed that our method holds great potential in scalable synthesis of P@carbon composites for future practical applications. 展开更多
关键词 red P hierarchical porous carbon GRINDING composites lithium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部