A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)...A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.展开更多
ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (...ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
文摘A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption.
基金Project(gf200901002)supported by the Open Research Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘ZrO2/TiO2 composite photocatalytic film was produced on the pure titanium substrate using in-situ Zr(OH)4 colloidal particle by the micro-arc oxidation technique and characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectrophotometer. The composite film shows a lamellar and porous structure which consists of anatase, futile and ZrO2 phases. The optical absorption edge of film is shifted to longer wavelength when ZrO2 is introduced to TiO2. Furthermore, the photocatalytic reaction rate constants of degradation of rhodamine B solution with ZrO2/TiO2 composite film and pure TiO2 film under ultraviolet irradiation are measured as 0.0442 and 0.0186 h 1, respectively.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.