Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ...Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.展开更多
The self-assembled phospholipid-or cytosolassociated multienzyme complexes constitute necessary components of the foundation of life.As a proof of concept,metalcoordinated supramolecular nanogels (MCSGs) have been des...The self-assembled phospholipid-or cytosolassociated multienzyme complexes constitute necessary components of the foundation of life.As a proof of concept,metalcoordinated supramolecular nanogels (MCSGs) have been designed,with the self-assembly of di-lysine coordinated iron(Fe(Lys)_(2))-functionalized peptide gelators on the interface by an in situ amidation-induced protonation process.The monoatomic and highly dispersed active centers of Fe(Lys)_(2) offered the nanogel mimics with excellent reaction rates due to the high density and nano compartmental structure similar to the natural matrix-associated multienzyme complex.SiO_(2)@MCSGs show both superoxide dismutase (SOD) activity and peroxidase (POD) activity,and the higher activities compared with the activity of free Fe(Lys);molecules can be detected.After loading the substrate 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate)(ABTS),SiO_(2)@MCSGs;can responsively convert O^(-)_(2) in the tumor microenvironment into H_(2)O_(2) intermediates and then tandem catalyze the oxidization of ABTS for contrast photoacoustic (PA) imaging of tumor by the SOD-POD mimic activity,showing their great potential as the efficient enzymatic agents for pathological theranostics.展开更多
基金Supported by the Natural Science Foundation of Ministry of Education of Jiangsu Province (02KJB470001).
文摘Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.
基金supported by the National Natural Science Foundation of China (51773155 and 51873156)the National Key Research and Development Program (2016YFA0100800 and 2018YFC1803100)。
文摘The self-assembled phospholipid-or cytosolassociated multienzyme complexes constitute necessary components of the foundation of life.As a proof of concept,metalcoordinated supramolecular nanogels (MCSGs) have been designed,with the self-assembly of di-lysine coordinated iron(Fe(Lys)_(2))-functionalized peptide gelators on the interface by an in situ amidation-induced protonation process.The monoatomic and highly dispersed active centers of Fe(Lys)_(2) offered the nanogel mimics with excellent reaction rates due to the high density and nano compartmental structure similar to the natural matrix-associated multienzyme complex.SiO_(2)@MCSGs show both superoxide dismutase (SOD) activity and peroxidase (POD) activity,and the higher activities compared with the activity of free Fe(Lys);molecules can be detected.After loading the substrate 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate)(ABTS),SiO_(2)@MCSGs;can responsively convert O^(-)_(2) in the tumor microenvironment into H_(2)O_(2) intermediates and then tandem catalyze the oxidization of ABTS for contrast photoacoustic (PA) imaging of tumor by the SOD-POD mimic activity,showing their great potential as the efficient enzymatic agents for pathological theranostics.