使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:...使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。展开更多
针对当前RFID(radio frequency identification)复合事件处理技术在性能和处理分布式应用方面的不足,提出了一种基于CORBA(分布对象请求代理体系结构)的分布式复合事件处理模型以及高效的基于查询规划和代价估算的分布式复合事件处理方...针对当前RFID(radio frequency identification)复合事件处理技术在性能和处理分布式应用方面的不足,提出了一种基于CORBA(分布对象请求代理体系结构)的分布式复合事件处理模型以及高效的基于查询规划和代价估算的分布式复合事件处理方法。实验结果表明,该方法在处理大规模的分布式RFID应用时是有效的。展开更多
文摘使用淮河流域1981年至2020年的149个气象站点的气温和相对湿度数据,分析了流域暖季极端高温干旱复合事件(Compound Drought and Heat Events,CDHEs)的时空演变特征,并通过趋势分析和相关分析法探讨了CDHEs与气候和植被的关系。结果表明:(1)CDHEs的发生日数在年代际尺度上呈现明显的增加趋势,并且范围扩大,频发区逐渐向淮河流域中西部移动;(2)在年际尺度上,CDHEs随时间序列呈显著的波动上升趋势,空间分布上以西北部为中心向四周递减。连续CDHEs事件呈年际变化,最大2至4天的连续事件存在波动,2019年达到高峰,并且在流域内零散或成片出现;(3)在月际尺度上,CDHEs的发生日数在6月最多,其次是5月、7月、9月和8月。淮河流域入汛前的旱情和入汛后的旱涝急转都容易导致CDHEs发生,而且随着月际变化向南移动;(4)CDHEs对水热条件和大气环流具有特别的敏感性。在850hPa反气旋和500hPa显著高压异常的控制下,高温、低湿、高蒸发和降水少的气候背景有利于淮河地区CDHEs的形成,尤其是在淮河中西部地区。因此,CDHEs的发生与气候变化密切相关;(5)CDHEs与植被生长也存在显著关系。CDHEs与GPP呈显著的负相关,而与NDVI呈显著的正相关,显著地区的土地类型以耕地和城乡、工矿、居民用地为主。GPP和NDVI的不同步可能是因为多种因素的非线性相互作用,而不仅仅是单一因素的影响。此外,对于GPP和NDVI来说,土壤含水量至关重要。总之,本文对淮河流域CDHEs的时空分布特征进行了深入研究,并探讨了其与气候和植被的关系。研究结果可以为该地区的气象灾害防御和生态环境保护提供科学依据和参考。
文摘针对当前RFID(radio frequency identification)复合事件处理技术在性能和处理分布式应用方面的不足,提出了一种基于CORBA(分布对象请求代理体系结构)的分布式复合事件处理模型以及高效的基于查询规划和代价估算的分布式复合事件处理方法。实验结果表明,该方法在处理大规模的分布式RFID应用时是有效的。