We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity...We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.展开更多
CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate(TEOS) as Si source,and aqueous solution of Cu,Co and Mn acetates as the precursors via sol-gel process and ethanol supercritical ...CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate(TEOS) as Si source,and aqueous solution of Cu,Co and Mn acetates as the precursors via sol-gel process and ethanol supercritical drying technique.The gelatination mechanism was investigated by nuclear magnetic resonance(NMR) and X-ray photoelectron spectroscopy(XPS).The microstructure and composition of the CuO-CoO-MnO/SiO2 nanocomposite aerogels were characterized by field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM),electron dispersive spectroscopy(EDS) and XPS.The specific surface area,pore size and pore size distribution of the nanocomposite aerogels were determined by the Brunauer–Emmett–Teller(BET) method.The products were analyzed by gas chromatography(GC).The results show that the CuO-CoO-MnO/SiO2 nanocomposite aerogels are porous,with a particle size distribution of 10–150 nm,a pore size distribution of 2–16 nm,an average pore size of 7.68 nm,and a specific surface area of 664.4-695.8 m2/g.The molar fraction of transition metals in the nanocomposite aerogels is 0.71%-13.77%.This kind of structure is favorable not only to increase the loading of catalysts,but also to make full use of the effect of transition metal oxides as cocatalysts;CuO-CoO-MnO/SiO2 nanocomposite aerogels can be used as a novel catalyst carrier in the safer and environment-friendly synthesis of diphenyl carbonate and other fields of catalysis.展开更多
基金supported by the National Natural Science Foundation of China(21503100)Natural Science Foundation of Jiangxi Province(20161BAB213071,20151BAB213010)+1 种基金Project of Education Department of Jiangxi Province(GJJ150325)Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University~~
文摘We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.
基金Project(10215606D) supported by the Science and Technology Development Foundation of Hebei province,China
文摘CuO-CoO-MnO/SiO2 nanocomposite aerogels were prepared by using tetraethyl orthosilicate(TEOS) as Si source,and aqueous solution of Cu,Co and Mn acetates as the precursors via sol-gel process and ethanol supercritical drying technique.The gelatination mechanism was investigated by nuclear magnetic resonance(NMR) and X-ray photoelectron spectroscopy(XPS).The microstructure and composition of the CuO-CoO-MnO/SiO2 nanocomposite aerogels were characterized by field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM),electron dispersive spectroscopy(EDS) and XPS.The specific surface area,pore size and pore size distribution of the nanocomposite aerogels were determined by the Brunauer–Emmett–Teller(BET) method.The products were analyzed by gas chromatography(GC).The results show that the CuO-CoO-MnO/SiO2 nanocomposite aerogels are porous,with a particle size distribution of 10–150 nm,a pore size distribution of 2–16 nm,an average pore size of 7.68 nm,and a specific surface area of 664.4-695.8 m2/g.The molar fraction of transition metals in the nanocomposite aerogels is 0.71%-13.77%.This kind of structure is favorable not only to increase the loading of catalysts,but also to make full use of the effect of transition metal oxides as cocatalysts;CuO-CoO-MnO/SiO2 nanocomposite aerogels can be used as a novel catalyst carrier in the safer and environment-friendly synthesis of diphenyl carbonate and other fields of catalysis.