Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy...Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.展开更多
基金the National Basic Research Program of China (2012CB933301)the National Natural Science Foundation of China (21305070, 21475064)+3 种基金the Natural Science Foundation of Jiangsu Province (BK20130861)the Sci-Tech Support Plan of Jiangsu Province (BE2014719)Specialized Research Fund for the Doctoral Program of Higher Education of China (IRT1148, 20133223120013)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Herein, platinum nanoparticles-decorated molybdenum disulfide (PtNPs@MoS2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). This MoSz-based nanocomposite modified glass carbon electrode (PtNPs@MoSz/GCE) exhibited excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at PtNPs@MoS2/GCE with a large peak separation of 160 mV (DA-UA), sug- gesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5-150 and 5-1000 gmol/L with detection limit of 0.17 and 0.98 gmol/L, respectively. The proposed MoSz-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the PtNPs@MoS2 nanocomposite might offer a good possibil- ity for electrochemical sensing and other electrocatalytic applications.