Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321...Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.展开更多
Although CRISPR/Cas9 has been widely used to generate knockout mice, two major limitations remain:the founders usually carry a mixture of genotypes, and mosaicism harboring multiple genotypes.Therefore, it takes a lon...Although CRISPR/Cas9 has been widely used to generate knockout mice, two major limitations remain:the founders usually carry a mixture of genotypes, and mosaicism harboring multiple genotypes.Therefore, it takes a long time to get homozygous mutants. Recently developed base editing(BE) system,which introduces C-to-T conversion without double strand DNA cleavage, has been used to introduce artificial stop codons(i-STOP) to prematurely terminate translation, providing a cleaner strategy for genome engineering. Using this strategy, we generated CD160 KO and VISTA/CD160 double KO mice by microinjection of a single sg RNA targeting CD160 and a mixture of sg RNAs targeting VISTA and CD160,respectively. The BE system induced STOP efficiently in mouse embryos and consequently in founder mice without detectable off-target. Most interestingly, the majority of the mutants harbor same genetic modifications, indicating we generated isogenic single and multiplex gene mutant mice by BE-induced STOP. We also obtained homozygous mutant mouse in F1 mice, demonstrating the accelerated strategy in generating animal models.展开更多
文摘Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.
基金supported by the National Key R&D Program(2016YFC0905901 to X.H.,2016YFA0503300 to X.G.)the NSFC(81771641 to X.G.)+1 种基金Fok Ying Tung Education Foundation(161037 to X.G.)Local Grants(17JC1420103 to X.H.,SKLRM-K201502 to X.G.)
文摘Although CRISPR/Cas9 has been widely used to generate knockout mice, two major limitations remain:the founders usually carry a mixture of genotypes, and mosaicism harboring multiple genotypes.Therefore, it takes a long time to get homozygous mutants. Recently developed base editing(BE) system,which introduces C-to-T conversion without double strand DNA cleavage, has been used to introduce artificial stop codons(i-STOP) to prematurely terminate translation, providing a cleaner strategy for genome engineering. Using this strategy, we generated CD160 KO and VISTA/CD160 double KO mice by microinjection of a single sg RNA targeting CD160 and a mixture of sg RNAs targeting VISTA and CD160,respectively. The BE system induced STOP efficiently in mouse embryos and consequently in founder mice without detectable off-target. Most interestingly, the majority of the mutants harbor same genetic modifications, indicating we generated isogenic single and multiplex gene mutant mice by BE-induced STOP. We also obtained homozygous mutant mouse in F1 mice, demonstrating the accelerated strategy in generating animal models.