Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. ...Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.展开更多
The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)o...The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.展开更多
基金Project (B2011203074) supported by the Natural Science Foundation of Hebei Province, ChinaProject (201101A129) supported by the Technology Research and Development Program of Qinhuangdao, Hebei Province, China
文摘Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.
基金financial supports from the National Natural Science Foundation of China (No.51421001)the Fundamental Research Funds for the Central Universities,China (Nos.2019CDQY CL001,2019CDCGCL204,2020CDJDPT001)the Research Project of State Key Laboratory of Vehicle NVH and Safety Technology,China (No.NVHSKL-201706)。
文摘The law of microstructure evolution and mechanical properties of hot roll bonded Cu/Mo/Cu clad sheets were systematically investigated and the theoretical prediction model of the coefficient of thermal expansion(CTE)of Cu/Mo/Cu clad sheets was established successfully.The results show that the deformation of Cu and Mo layers was gradually coherent with an increase in rolling reduction and temperature and excellent interface bonding was achieved under the condition of a large rolling reduction.The development of the microstructure and texture through the thickness of Cu and Mo layers was inhomogeneous.This phenomenon can be attributed to the friction between the roller and sheet surface and the uncoordinated deformation between Cu and Mo.The tensile strength of the clad sheets increased with increasing rolling reduction and the elongation was gradually decreased.The CTE of Cu/Mo/Cu clad sheets was related to the volume fraction of Mo.The finite element method can simulate the deformation and stress distribution during the thermal expansion process.The simulation result indicates that the terminal face of the clad sheets was sunken inward.