对比研究新型Ti/Al复合基体电极Ti/Al/Ti/SnO2+Sb2O4/PbO2和传统纯Ti基体电极Ti/SnO2+Sb2O4/PbO2的性能差异。通过改变Ti/Al复合基体的制备温度,探索制备新型电极的最佳工艺条件。运用SEM、EDS和XRD表征Ti/Al基体界面层与电极表面β-PbO...对比研究新型Ti/Al复合基体电极Ti/Al/Ti/SnO2+Sb2O4/PbO2和传统纯Ti基体电极Ti/SnO2+Sb2O4/PbO2的性能差异。通过改变Ti/Al复合基体的制备温度,探索制备新型电极的最佳工艺条件。运用SEM、EDS和XRD表征Ti/Al基体界面层与电极表面β-PbO2活性层的物相形貌。结合电化学测试技术,分析基体制备温度对电极电化学性能及寿命的影响。结果表明:Ti/Al复合基体的电阻率仅为纯Ti的1/10,该电极β-PbO2层的晶粒趋于细化且均匀,活性层比表面积增大,电化学性能均好于纯Ti基体电极。其中,在540℃获得的Ti/Al基体复合界面相为TiAl3,该复合基体电极的性能最佳。电极电阻较纯Ti基体电极降低43%,极化电位下降18%,在0.2 A/cm2的电流密度下,电位降低了320 m V。经强极化测试,该电极具有最大的交换电流密度j0与最低的析氧超电压η,工业使用寿命长达10.4年,高出传统电极50%,具有良好的应用前景。展开更多
文摘对比研究新型Ti/Al复合基体电极Ti/Al/Ti/SnO2+Sb2O4/PbO2和传统纯Ti基体电极Ti/SnO2+Sb2O4/PbO2的性能差异。通过改变Ti/Al复合基体的制备温度,探索制备新型电极的最佳工艺条件。运用SEM、EDS和XRD表征Ti/Al基体界面层与电极表面β-PbO2活性层的物相形貌。结合电化学测试技术,分析基体制备温度对电极电化学性能及寿命的影响。结果表明:Ti/Al复合基体的电阻率仅为纯Ti的1/10,该电极β-PbO2层的晶粒趋于细化且均匀,活性层比表面积增大,电化学性能均好于纯Ti基体电极。其中,在540℃获得的Ti/Al基体复合界面相为TiAl3,该复合基体电极的性能最佳。电极电阻较纯Ti基体电极降低43%,极化电位下降18%,在0.2 A/cm2的电流密度下,电位降低了320 m V。经强极化测试,该电极具有最大的交换电流密度j0与最低的析氧超电压η,工业使用寿命长达10.4年,高出传统电极50%,具有良好的应用前景。