In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b...In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.展开更多
N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone ...N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone (PSF) composite NF membranes. The permeate flux and the removal efficiencies of the resulting NF membranes for the color, chemical oxygen demand (CODcr), total organic carbon (TOC), and conductivity of the fermentation effluent were investigated in relation to the driving pressure, the feed flow, and the operation time. The permeate flux and the removal efficiencies were found to increase with the increase of the driving pressure or the feed flow. At 0.40 MPa and ambient temperature the removal efficiencies were 95.5%, 70.7%, 72.6%, and 31.6% for color, CODcr, TOC, and conductivity, respectively. The membrane was found to be stable over a 10-h ooeration for the fermentation effluent treatment.展开更多
This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)eth...This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).展开更多
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from it...Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation performance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40°C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g·m?2·h?1 and 26.1, respectively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.展开更多
Novel composites were synthesized using AEPTES (3-(2-aminoethylamino)propyltriethoxysilane), which behaves as an excellent dispersant for MWCNTs (multiwall carbon nanotubes) in polymer film matrices. The thickne...Novel composites were synthesized using AEPTES (3-(2-aminoethylamino)propyltriethoxysilane), which behaves as an excellent dispersant for MWCNTs (multiwall carbon nanotubes) in polymer film matrices. The thickness of the synthesized nanocomposite films ranged from 50 to 70 lam, having well-dispersed MWCNTs. Increasing the AEPTES concentration from 0.0196 to 0.0300 M, increased the amine content and the dispersion of MWCNTs. The film synthesized at 0.0300 M AETPES exhibited the greatest degree of dispersion among the three samples, which is consistent with a self-assembled silane group interacting with the MWCNT surface.展开更多
A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface struc...A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.展开更多
Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composi...Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composite films owned higher carriers mobility than the OTFT based on pure P3 HT. It can be found that the mobility of OTFTs increased by 135% due to ZnO-nanorods doping. This was attributed to the improvement of the P3 HT crystallinity and the optimization of polymer chains orientation. Meanwhile, because of the distinction of work function between P3 HT and ZnO, the majority carriers would accumulate on either side of the P3HT-ZnO interface which benefited carrier transfer. The influence on the mobility of composite film was studied. In addition, the threshold voltage of devices changed positively with the increase of ZnO-nanorods due to the decrease of electrostatic potential for P3HT/ZnO-nanorods composite films. The effect could be explained by the energy level theory of semiconductor.展开更多
An appropriate diameter and wire-to-wire dis- tance is critical for optimizing the performance of hybrid inorganic/organic photovoltaic devices. For a deep under- standing of their influences on such hybrid structures...An appropriate diameter and wire-to-wire dis- tance is critical for optimizing the performance of hybrid inorganic/organic photovoltaic devices. For a deep under- standing of their influences on such hybrid structures, the well-ordered ZnO nanowires with different diameters are fabricated by the versatile hydrothermal growth. The dependence of the photovoltaic performance on the surface states, wire diameter and wire-to-wire distance is investi- gated. We demonstrate that the pristine thick ZnO nanowires film possess a higher surface photovoltage (SPV) response than the thin one. This is mainly due to the influence of surface states on the thin ZnO nanowires, which can capture the photo-generated carriers. When the two kinds of ZnO nanowires are fabricated into a hybrid inorganic/organic structure, the thin ZnO nanowires/poly(3-hexylthiophene) hybrid film has a higher SPV response than the thick one, which is contrary to the pristine ZnO nanowires. This is benefited from the smaller diameter and wire-to-wire dis- tance of the thin ZnO nanowires owned. The crystallinity, wire diameter and wire-to-wire distance have the crucial influence on the final photovoltaic performance. The results shown here give us insights toward designing efficient hybrid photovoltaic devices.展开更多
基金Supported by Key Projects in the National Science & Technology Pillar Program (2011BAC08B00)
文摘In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.
基金the Special Funds for Major State Basic Research Program of China(2003CB615706)
文摘N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone (PSF) composite NF membranes. The permeate flux and the removal efficiencies of the resulting NF membranes for the color, chemical oxygen demand (CODcr), total organic carbon (TOC), and conductivity of the fermentation effluent were investigated in relation to the driving pressure, the feed flow, and the operation time. The permeate flux and the removal efficiencies were found to increase with the increase of the driving pressure or the feed flow. At 0.40 MPa and ambient temperature the removal efficiencies were 95.5%, 70.7%, 72.6%, and 31.6% for color, CODcr, TOC, and conductivity, respectively. The membrane was found to be stable over a 10-h ooeration for the fermentation effluent treatment.
基金Supported by the National Natural Science Foundation of China(20906047)the State Key Laboratory of Chemical Engineering(SKL-ChE-09A01)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)
文摘This paper reports on a new microporous composite silica membrane prepared via acid-catalyzed polymeric route of sol-gel method with tetraethylorthosilicate(TEOS)and a bridged silsesquioxane[1,2-bis(triethoxysilyl)ethane, BTESE]as precursors.A stable nano-sized composite silica sol with a mean volume size of^5 nm was synthesized. A 150 nm-thick defect-free composite silica membrane was deposited on disk support consisting of macroporous α-Al2O3 and mesoporousγ-Al2O3 intermediate layer by using dip-coating approach,followed by calcination under pure nitrogen atmosphere.The composite silica membranes exhibit molecular sieve properties for small gases like H2,CO2,O2,N2,CH4 and SF6 with hydrogen permeances in the range of(1-4)×10 -7mol·m -2·s -1·Pa -1(measured at 200°C,3.0×105 Pa).With respect to the membrane calcined at 500°C,it is found that the permselectivities of H 2 (0.289 nm)with respect to N2(0.365 nm),CH4(0.384 nm)and SF6(0.55 nm)are 22.9,42 and>1000,respectively, which are all much higher than the corresponding Knudsen values(H2/N2=3.7,H2/CH4=2.8,and H2/SF6=8.5).
基金Supported by the National Basic Research Program of China(2009CB623406) the National Natural Science Foundation of China(20990222)+1 种基金 the Natural Science Foundation of Jiangsu Province(SBK200930313) the“Six Kinds of Important Talents”Program of Jiangsu Province(2007007)
文摘Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation performance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40°C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g·m?2·h?1 and 26.1, respectively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.
文摘Novel composites were synthesized using AEPTES (3-(2-aminoethylamino)propyltriethoxysilane), which behaves as an excellent dispersant for MWCNTs (multiwall carbon nanotubes) in polymer film matrices. The thickness of the synthesized nanocomposite films ranged from 50 to 70 lam, having well-dispersed MWCNTs. Increasing the AEPTES concentration from 0.0196 to 0.0300 M, increased the amine content and the dispersion of MWCNTs. The film synthesized at 0.0300 M AETPES exhibited the greatest degree of dispersion among the three samples, which is consistent with a self-assembled silane group interacting with the MWCNT surface.
基金supported by the National Natural Science Foundation of China (Grant No. 51072188)the Natural Science Foundation of Shandong Province (Grant No. Y2008B46)
文摘A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.
基金supported by the foundation for Innovation Research Groups of the National Natural Science Foundation of China(NSFC)(Grant No.61421002)the National Natural Science Foundation of China(Grant Nos.61571097)
文摘Organic thin film transistors(OTFTs) based on poly(3-hexylthiophene)(P3HT)/Zinc oxide(ZnO) nanorods composite films as the active layers were prepared by spray-coating process. The OTFTs with P3HT/ZnO-nanorods composite films owned higher carriers mobility than the OTFT based on pure P3 HT. It can be found that the mobility of OTFTs increased by 135% due to ZnO-nanorods doping. This was attributed to the improvement of the P3 HT crystallinity and the optimization of polymer chains orientation. Meanwhile, because of the distinction of work function between P3 HT and ZnO, the majority carriers would accumulate on either side of the P3HT-ZnO interface which benefited carrier transfer. The influence on the mobility of composite film was studied. In addition, the threshold voltage of devices changed positively with the increase of ZnO-nanorods due to the decrease of electrostatic potential for P3HT/ZnO-nanorods composite films. The effect could be explained by the energy level theory of semiconductor.
文摘An appropriate diameter and wire-to-wire dis- tance is critical for optimizing the performance of hybrid inorganic/organic photovoltaic devices. For a deep under- standing of their influences on such hybrid structures, the well-ordered ZnO nanowires with different diameters are fabricated by the versatile hydrothermal growth. The dependence of the photovoltaic performance on the surface states, wire diameter and wire-to-wire distance is investi- gated. We demonstrate that the pristine thick ZnO nanowires film possess a higher surface photovoltage (SPV) response than the thin one. This is mainly due to the influence of surface states on the thin ZnO nanowires, which can capture the photo-generated carriers. When the two kinds of ZnO nanowires are fabricated into a hybrid inorganic/organic structure, the thin ZnO nanowires/poly(3-hexylthiophene) hybrid film has a higher SPV response than the thick one, which is contrary to the pristine ZnO nanowires. This is benefited from the smaller diameter and wire-to-wire dis- tance of the thin ZnO nanowires owned. The crystallinity, wire diameter and wire-to-wire distance have the crucial influence on the final photovoltaic performance. The results shown here give us insights toward designing efficient hybrid photovoltaic devices.