FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and ene...FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) were used to observe and analyze the microstructure and composition of FeCrAl(f)/HA composites,respectively.The mechanical properties of FeCrAl(f)/HA composites were measured by the three-point-bending test.The results show that the composite can be reinforced by FeCrAl fiber and enhanced gradually,and then declined with the increase of the content of FeCrAl fiber(0-11%,volume fraction) in the whole range of experiments.Both the HA matrix and FeCrAl fiber integrate very tightly and bit into each other very deeply and counter-diffusion takes place to some extent at two-phase interface.The optimum parameters of FeCrAl(f)/HA composite are diameter of 22 μm,length of 1-2 mm and of volume faction of about 7% for FeCrAl fibers.展开更多
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi...A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.展开更多
Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the lo...Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.展开更多
Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhanc...Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.展开更多
The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polym...The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.展开更多
In order to develop high strength,high damping and low density Al matrix composites,the Al/Zn composite bar samples with Zn mass fraction of 10%-40%were prepared by powder extrusion.The tensile strength and damping pr...In order to develop high strength,high damping and low density Al matrix composites,the Al/Zn composite bar samples with Zn mass fraction of 10%-40%were prepared by powder extrusion.The tensile strength and damping properties of the samples are improved by controlling both the Zn/Al diffusion degree and the precipitation of the interfacial phases.The results show that the tensile strength of the samples with Zn mass fraction of 10%-30%increases with the increases of both the Zn content and annealing temperature.When the Zn mass fraction increases to 40%,the tensile strength of the sample remains basically unchanged or decreases slightly,and the plasticity decreases gradually.Alloying of Al matrix and the formation of Zn/Al interface layer are mainly responsible for improving the strength of the annealed samples.The damping properties increase with the increases of both the Zn content and annealing temperature.The Zn/Al eutectoid lamella eliminates the detrimental effects on damping properties due to both alloying of the Al matrix and reduction of pure Zn in the Al matrix.The Al-30%Zn sample annealed at 350°C for 0.5 h has good comprehensive properties,including the tensile strength of 330 MPa,the elongation to failure of 10%and the room-temperature damping properties(tanθ)of 0.025.展开更多
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified...The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.展开更多
Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura...Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.展开更多
3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 ...3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data.展开更多
In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and...In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and the influence of thickness-radius ratio,length-radius ratio,layer angles,layer proportion,and stacked approaches on MFRP shaft dynamic characteristics is investigated.The result shows that the proposed coupling model has high accuracy in MFRP shaft dynamic performance prediction.The proportion of small-angle layers is the decisive factor of MFRP shaft natural frequency.With the increase of thickness-radius ratio and length-radius ratio,the natural frequency of MFRP shaft decreases.The natural frequency of MFRP shaft with the angle layers combination of±45°and±90°is smaller compared with the metal shaft no matter in simple/free boundary condition or simple/simple supported boundary condition.展开更多
This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings hi...This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.展开更多
We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has...We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.展开更多
A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A...A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.展开更多
In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical propertie...In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical properties of natural fiber reinforced composites under their in-service environment.Compared with synthetic fibers,the hydrophilicity of natural fibers could result in a much larger quantity of water absorption from the moisture atmosphere,which would have adverse consequences for the durability of natural fiber reinforced composites[1].The environmental temperature would affect the展开更多
基金Project(50774096) supported by the National Natural Science Foundation of ChinaProject(2011QNZT046) supported by the Fundamental Research Funds of the Central South University,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘FeCrAl fiber-reinforced hydroxyapatite(HA) biocomposites(FeCrAl(f)/HA) were fabricated by the hot pressing technique.The metallographic microscopy,X-ray diffractometry,scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) were used to observe and analyze the microstructure and composition of FeCrAl(f)/HA composites,respectively.The mechanical properties of FeCrAl(f)/HA composites were measured by the three-point-bending test.The results show that the composite can be reinforced by FeCrAl fiber and enhanced gradually,and then declined with the increase of the content of FeCrAl fiber(0-11%,volume fraction) in the whole range of experiments.Both the HA matrix and FeCrAl fiber integrate very tightly and bit into each other very deeply and counter-diffusion takes place to some extent at two-phase interface.The optimum parameters of FeCrAl(f)/HA composite are diameter of 22 μm,length of 1-2 mm and of volume faction of about 7% for FeCrAl fibers.
文摘A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.
基金The National Basic Research Program of China (973 Program)(No.2007CB714200)the National Natural Science Foundationof China (No.50608015,50908102)
文摘Numerical analysis is carried out to study the sectional properties of the fiber-reinforced polymer(FRP)-confined reinforced concrete(RC)circular columns. The axial load ratio, the FRP confinement ratio and the longitudinal reinforcement characteristic value are the three main parameters that can influence the neutral axis depth when concrete compression strain reaches an ultimate value. The formula for computing the central angle θ, corresponding to the compression zone, is established according to the data regression of the numerical analysis results. The numerical analysis results demonstrate that the concrete stress enhancement from transverse confinement and strain hardening of the longitudinal reinforcement can cause a much greater flexural strength than that defined by the design code. Based on the analytical studies and the test results of 36 large scale columns, the formula to calculate the flexural strength when columns fail under seismic loading is proposed, and the calculated results agree well with the test results. Finally, parametric studies are conducted on a typical column with different axial load ratios, longitudinal reinforcement characteristic value and FRP confinement ratios. Analysis of the results shows that the calculated flexural strength can be increased by 50% compared to that of unconfined columns defined by the code.
基金Project (2006AA11Z104) supported by the National High-Tech Research and Development Program("863" Program)
文摘Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No 61004008), the Central Universities under Grant HEUCFR1001 and LBH-10138 Higher Sliding Mode Control for Underactuated Surface Ship.
文摘The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.
基金Project(2016YFB0300901)supported by the National Key Research and Development Program of China
文摘In order to develop high strength,high damping and low density Al matrix composites,the Al/Zn composite bar samples with Zn mass fraction of 10%-40%were prepared by powder extrusion.The tensile strength and damping properties of the samples are improved by controlling both the Zn/Al diffusion degree and the precipitation of the interfacial phases.The results show that the tensile strength of the samples with Zn mass fraction of 10%-30%increases with the increases of both the Zn content and annealing temperature.When the Zn mass fraction increases to 40%,the tensile strength of the sample remains basically unchanged or decreases slightly,and the plasticity decreases gradually.Alloying of Al matrix and the formation of Zn/Al interface layer are mainly responsible for improving the strength of the annealed samples.The damping properties increase with the increases of both the Zn content and annealing temperature.The Zn/Al eutectoid lamella eliminates the detrimental effects on damping properties due to both alloying of the Al matrix and reduction of pure Zn in the Al matrix.The Al-30%Zn sample annealed at 350°C for 0.5 h has good comprehensive properties,including the tensile strength of 330 MPa,the elongation to failure of 10%and the room-temperature damping properties(tanθ)of 0.025.
基金Project (50478502) supported by the National Natural Science Foundation of China
文摘The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing,China
文摘Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(11672055,11272072).
文摘3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data.
文摘In order to study the dynamic characteristics of multilayer fiber reinforced plastic(MFRP)shaft,the coupling model of three-dimensional equivalent bending stiffness theory and transfer matrix method is established,and the influence of thickness-radius ratio,length-radius ratio,layer angles,layer proportion,and stacked approaches on MFRP shaft dynamic characteristics is investigated.The result shows that the proposed coupling model has high accuracy in MFRP shaft dynamic performance prediction.The proportion of small-angle layers is the decisive factor of MFRP shaft natural frequency.With the increase of thickness-radius ratio and length-radius ratio,the natural frequency of MFRP shaft decreases.The natural frequency of MFRP shaft with the angle layers combination of±45°and±90°is smaller compared with the metal shaft no matter in simple/free boundary condition or simple/simple supported boundary condition.
文摘This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.
基金Funded by the Science and Technology Plan Project (No. 62065) of Guangzhou.
文摘We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.
基金supported by the National Natural Science Foundation of China (Grant No. 11032002 and 91016013)the program for New Century Excellent Talents in University+1 种基金National Basic Research Program of China (Grant No. 2010CB832706)the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No. ZDKT10-03a)
文摘A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.
基金supported by the Shenzhen Municipal Government through the Fundamental Research Project(Grant No.JCYJ20170307151049286)the National Natural Science Foundation of China(Grant No.11572227)
文摘In recent years,natural fiber reinforced composites have been widely applied to various industrial products for their excellent environmental-friendly performance.It is essential to understand the mechanical properties of natural fiber reinforced composites under their in-service environment.Compared with synthetic fibers,the hydrophilicity of natural fibers could result in a much larger quantity of water absorption from the moisture atmosphere,which would have adverse consequences for the durability of natural fiber reinforced composites[1].The environmental temperature would affect the