期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于复合多尺度模糊熵的滚动轴承故障诊断方法 被引量:25
1
作者 郑近德 潘海洋 +1 位作者 程军圣 张俊 《振动与冲击》 EI CSCD 北大核心 2016年第8期116-123,共8页
为了精确地提取滚动轴承振动信号非线性故障特征,针对多尺度熵(Multi-Scale Entropy,MSE)中粗粒化方式的不足,提出一种新的衡量时间序列自相似性和复杂性的方法——复合多尺度模糊熵(Composite Multi-Scale Fuzzy Entropy,CMFE)。与MSE... 为了精确地提取滚动轴承振动信号非线性故障特征,针对多尺度熵(Multi-Scale Entropy,MSE)中粗粒化方式的不足,提出一种新的衡量时间序列自相似性和复杂性的方法——复合多尺度模糊熵(Composite Multi-Scale Fuzzy Entropy,CMFE)。与MSE相比,CMFE综合同一尺度下多个粗粒化序列的信息,随着尺度因子的增加,熵值变化更加稳定,一致性更好。在此基础上,结合Fisher得分特征选择和支持向量机模式分类,提出了一种新的滚动轴承智能故障诊断方法。将提出的方法应用于滚动轴承实验数据分析,通过对比结果验证了所提出方法的有效性和优越性。 展开更多
关键词 多尺度 复合多尺度模糊 特征选择 滚动轴承 故障诊断
下载PDF
基于精细复合多尺度模糊熵的往复压缩机轴承间隙故障特征分析方法 被引量:13
2
作者 王金东 陈新 +3 位作者 赵海洋 贾川 陈桂娟 雷勇 《机床与液压》 北大核心 2021年第16期185-190,共6页
针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征... 针对往复压缩机故障信号呈现非线性、非平稳等特点,提出了基于精细复合多尺度模糊熵(RCMFE)的往复压缩机轴承间隙故障特征提取方法。在精细复合多尺度熵的基础上,结合模糊熵概念,提出了RCMFE方法,应用其量化信号非线性特性形成故障特征。白噪声和1/f噪声仿真信号分析结果表明:RCMFE熵值对数据长度不敏感,未定义熵出现概率小。以往复压缩机传动机构轴承间隙故障为研究对象,应用RCMFE实现其故障信号特征提取,并与多尺度模糊熵、复合多尺度模糊熵进行对比,该方法特征区分度显著,支持向量机故障识别准确率高于其他方法。 展开更多
关键词 精细复合多尺度模糊 往复压缩机 滑动轴承 故障诊断
下载PDF
基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断 被引量:7
3
作者 孟宗 赵东方 +2 位作者 李晶 熊景鸣 刘爽 《计量学报》 CSCD 北大核心 2018年第2期231-236,共6页
提出了一种基于局部均值分解多尺度模糊熵和灰色相似关联度相结合的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数,并从中选取包含主要故障信息的PF分量计算多尺度模糊熵作为特征向量,通过计算待识别样本与标准故... 提出了一种基于局部均值分解多尺度模糊熵和灰色相似关联度相结合的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数,并从中选取包含主要故障信息的PF分量计算多尺度模糊熵作为特征向量,通过计算待识别样本与标准故障模式的灰色相似关联度,对滚动轴承故障类型和损伤程度进行判断。将该方法与LMD模糊熵和灰色相似关联度相结合的方法进行了对比,实验表明,基于LMD多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断方法,能够有效地识别滚动轴承运行状态,实现对滚动轴承的故障诊断。 展开更多
关键词 计量学 滚动轴承 故障诊断 局部均值分解 多尺度模糊 灰色相似关联度
下载PDF
基于多尺度熵偏均值的液压泵故障特征识别 被引量:5
4
作者 姜万录 董克岩 +1 位作者 朱勇 王浩楠 《液压与气动》 北大核心 2016年第7期12-17,共6页
针对不同故障类型下的液压泵振动信号具有不同复杂性的特点,将多尺度熵引入到液压泵故障识别中。多尺度熵是在样本熵的基础上通过引入尺度因子,从而能够分析信号在不同尺度因子下的复杂性。在多尺度熵的基础上定义一个同时考虑多尺度熵... 针对不同故障类型下的液压泵振动信号具有不同复杂性的特点,将多尺度熵引入到液压泵故障识别中。多尺度熵是在样本熵的基础上通过引入尺度因子,从而能够分析信号在不同尺度因子下的复杂性。在多尺度熵的基础上定义一个同时考虑多尺度熵熵值大小和熵值变化趋势的指标——多尺度熵偏均值(PMMSE),该指标定量地刻画故障信号的复杂性。将该指标用于液压泵的故障识别中。通过对液压泵4种不同运行状态的实测振动信号进行分析,结果表明PMMSE能够很好地区分出液压泵的不同故障类型,验证了该指标在故障特征提取中的有效性。 展开更多
关键词 液压泵 多尺度 均值 故障特征
下载PDF
基于插值多尺度熵与模糊C-均值的滚动轴承故障诊断 被引量:3
5
作者 郑近德 代俊习 +2 位作者 朱小龙 潘海洋 潘紫微 《噪声与振动控制》 CSCD 2018年第1期193-198,共6页
多尺度熵是一种有效的衡量时间序列复杂性的方法。为了克服多尺度熵粗粒化过程遗漏特征信息的问题,提出了一种基于三次样条插值时间序列的插值多尺度熵算法。该方法首先通过三次样条插值时间序列代替原粗粒化过程,再计算各个尺度下的样... 多尺度熵是一种有效的衡量时间序列复杂性的方法。为了克服多尺度熵粗粒化过程遗漏特征信息的问题,提出了一种基于三次样条插值时间序列的插值多尺度熵算法。该方法首先通过三次样条插值时间序列代替原粗粒化过程,再计算各个尺度下的样本熵。通过分析仿真信号将提出的方法与原多尺度熵方法进行对比,结果表明了方法的有效性和优越性。在此基础上,提出一种基于插值多尺度熵与模糊C-均值的滚动轴承故障诊断方法。最后,将提出的故障诊断方法应用于滚动轴承的试验数据分析。结果表明,所提出的方法比基于MSE的故障诊断方法识别率更高。 展开更多
关键词 振动与波 多尺度 插值多尺度 模糊C-均值 滚动轴承 故障诊断
下载PDF
基于复合多尺度交叉模糊熵的行星齿轮箱故障诊断 被引量:6
6
作者 候双珊 郑近德 +2 位作者 潘海洋 童靳于 刘庆运 《振动与冲击》 EI CSCD 北大核心 2023年第20期130-135,171,共7页
模糊熵是衡量时间序列复杂性的非线性动力学分析方法,也是提取齿轮箱非线性故障特征的有效工具。然而模糊熵只对单个时间序列进行复杂性测量,忽略了两个不同时间序列之间模式的相似性。为充分利用振动信号间的丰富信息,将能够有效衡量... 模糊熵是衡量时间序列复杂性的非线性动力学分析方法,也是提取齿轮箱非线性故障特征的有效工具。然而模糊熵只对单个时间序列进行复杂性测量,忽略了两个不同时间序列之间模式的相似性。为充分利用振动信号间的丰富信息,将能够有效衡量两个时间序列同步性、相似性和互预测性的交叉熵理论引入到行星齿轮箱故障诊断中。针对单一尺度的熵值不能完整反映序列间模式复杂性问题,通过复合粗粒化的方式对时间序列进行多尺度分析,提出了衡量两通道时间序列相似性与互预测性的复合多尺度交叉模糊熵方法。在此基础上,提出了一种基于复合多尺度交叉模糊熵和萤火虫优化支持向量机的行星齿轮箱故障诊断方法。最后,将所提的故障诊断方法应用于行星齿轮箱试验数据分析,并与现有方法进行了对比,结果表明所提方法能够有效提取故障特征,并且在故障类型诊断方面有更高的识别率。 展开更多
关键词 交叉模糊 多尺度模糊 复合多尺度交叉模糊 行星齿轮箱 故障诊断
下载PDF
基于变分模态分解和精细复合多尺度均值散布熵的轴承故障诊断 被引量:8
7
作者 张婕 张梅 陈万利 《机电工程》 CAS 北大核心 2023年第5期682-690,共9页
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通... 为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。 展开更多
关键词 轴承故障诊断 变分模态分解 精细复合多尺度均值散布 鲸鱼算法 支持向量机 超参数寻优
下载PDF
基于参数优化变分模态分解和多尺度熵偏均值的行星变速箱故障特征提取 被引量:24
8
作者 杨大为 赵永东 +2 位作者 冯辅周 江鹏程 丁闯 《兵工学报》 EI CAS CSCD 北大核心 2018年第9期1683-1691,共9页
针对某型装甲车辆行星变速箱行星轮故障特征难以提取的问题,提出了结合参数优化变分模态分解(VMD)和多尺度熵偏均值的故障特征提取方法。为克服VMD算法参数选取依赖经验的弊端,采用粒子群优化算法对VMD参数进行优化。使用参数优化后的VM... 针对某型装甲车辆行星变速箱行星轮故障特征难以提取的问题,提出了结合参数优化变分模态分解(VMD)和多尺度熵偏均值的故障特征提取方法。为克服VMD算法参数选取依赖经验的弊端,采用粒子群优化算法对VMD参数进行优化。使用参数优化后的VMD算法对信号进行分解,并依据互信息选取有效分量对信号进行重构。多尺度熵能反映信号在多尺度下的复杂度,偏均值可以反映多尺度熵的均值和变化趋势。采用基于多尺度熵的综合指标多尺度偏均值,以全面反映振动信号在多尺度下的特性,用于衡量行星变速箱运行状态,从而进行故障特征提取。行星变速箱实验数据处理结果表明,新方法可以更加有效的提取行星变速箱故障。 展开更多
关键词 行星变速箱 故障特征提取 变分模态分解 多尺度均值
下载PDF
分段复合多尺度模糊熵和IGWO-SVM的脑电情感识别 被引量:6
9
作者 魏雪 吴清 《计算机应用研究》 CSCD 北大核心 2019年第11期3310-3314,3356,共6页
为提高脑电的情感识别率,提出了分段复合多尺度模糊熵算法,采用分段粗粒化和计算复合多尺度模糊熵的策略,使提取特征较好地解决了数据缺失和计算不准确的问题;同时构造了应用余弦非线性收敛因子和动静态位置更新的灰狼算法优化支持向量... 为提高脑电的情感识别率,提出了分段复合多尺度模糊熵算法,采用分段粗粒化和计算复合多尺度模糊熵的策略,使提取特征较好地解决了数据缺失和计算不准确的问题;同时构造了应用余弦非线性收敛因子和动静态位置更新的灰狼算法优化支持向量机分类模型。为证明所提两种算法的有效性,进行了仿真实验验证,并在公开DEAP数据库下与几种常见的支持向量机优化模型比较脑电的情感识别率,结果表明在提出的模型下,效价、唤醒度、优势度、喜欢度的平均识别率分别为87.27%、87.81%、89.06%、87.58%,均高于其他算法。另外对比了高/低喜欢度下效价和唤醒度的分类,实验表明喜欢度低时情感识别率较高。 展开更多
关键词 脑电信号 情感识别 改进灰狼优化算法 SVM优化算法 分段复合多尺度模糊
下载PDF
频带多尺度复合模糊熵及其在轴承故障诊断中的应用 被引量:2
10
作者 童水光 张依东 +1 位作者 徐剑 从飞云 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第8期1509-1516,共8页
旋转机械设备发生滚动轴承故障的早期,受环境噪声影响,故障特征轻微.为了有效提取滚动轴承的故障信号冲击特征,以时频分析为基础,结合信息熵理论,提出一种频带多尺度复合模糊熵的故障诊断方法.与模糊熵相比,基于方差的频带多尺度复合模... 旋转机械设备发生滚动轴承故障的早期,受环境噪声影响,故障特征轻微.为了有效提取滚动轴承的故障信号冲击特征,以时频分析为基础,结合信息熵理论,提出一种频带多尺度复合模糊熵的故障诊断方法.与模糊熵相比,基于方差的频带多尺度复合模糊熵可以定量地表征非平稳信号的数据信息,抗干扰性强,更好地反映出不同频带分量在时间轴上的变化特性.引入自适应带通滤波器,成功实现对微弱故障的特征提取和故障识别.仿真分析和实验结果表明,提出的方法较传统滤波方法在降噪抑制方面效果更好,能够快速识别滚动轴承的冲击特征. 展开更多
关键词 故障诊断 特征提取 时频分析 频带 多尺度复合模糊
下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
11
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多多尺度模糊 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
下载PDF
复合层次模糊熵及其在滚动轴承故障诊断中的应用 被引量:19
12
作者 郑近德 潘海洋 +1 位作者 戚晓利 潘紫微 《中国机械工程》 EI CAS CSCD 北大核心 2016年第15期2048-2055,共8页
针对样本熵和多尺度熵中相似性度量函数的突变问题,及它们在分析时间序列复杂性时捕捉不到高频组分信息的局限,提出了一种新的时间序列的复杂性度量方法——复合层次模糊熵(CHFE)。为了有效地提取滚动轴承早期故障特征,提出了一种基于C... 针对样本熵和多尺度熵中相似性度量函数的突变问题,及它们在分析时间序列复杂性时捕捉不到高频组分信息的局限,提出了一种新的时间序列的复杂性度量方法——复合层次模糊熵(CHFE)。为了有效地提取滚动轴承早期故障特征,提出了一种基于CHFE、拉普拉斯分值和支持向量机的滚动轴承故障诊断方法。首先,提取振动信号的CHFE值;其次,采用拉普拉斯分值对特征向量进行降维优化;再次,建立基于支持向量机的多故障分类器,实现滚动轴承的故障诊断;最后,将该方法应用于实验数据分析,结果验证了方法的有效性。 展开更多
关键词 多尺度 层次 复合层次模糊 滚动轴承 故障诊断
下载PDF
基于改进CEEMDAN和多尺度模糊熵的气阀故障诊断 被引量:3
13
作者 柴兴亮 刘薇娜 《组合机床与自动化加工技术》 北大核心 2020年第10期140-143,147,共5页
针对往复压缩机振动信号非线性非平稳性的特点,文章提出基于改进CEEMDAN和多尺度模糊熵的气阀故障诊断方法。首先,利用单调的三次Hermite插值代替三次样条插值构造信号的包络线,可以有效提高CEEMDAN对非平稳性信号的分解精度;其次,对分... 针对往复压缩机振动信号非线性非平稳性的特点,文章提出基于改进CEEMDAN和多尺度模糊熵的气阀故障诊断方法。首先,利用单调的三次Hermite插值代替三次样条插值构造信号的包络线,可以有效提高CEEMDAN对非平稳性信号的分解精度;其次,对分解后的IMF分量采取相关系数和峭度作为评价指标进行筛选,对筛选后的IMF分量重构信号然后求解多尺度模糊熵;最后,提出了结合其变化趋势的指标-多尺度模糊熵偏均值,将其输入到SVM进行故障分类识别。实验结果表明,该方法能提高气阀的故障识别率。 展开更多
关键词 机械设计 CEEMDAN 多尺度模糊 均值 气阀 故障诊断
下载PDF
基于多尺度排列熵的液压泵故障识别 被引量:30
14
作者 王余奎 李洪儒 叶鹏 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期518-523,共6页
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡... 将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。 展开更多
关键词 多尺度排列 均值 液压泵 故障特征
下载PDF
基于多尺度样本熵与PCA-FCM的滚动轴承故障诊断 被引量:5
15
作者 许凡 方彦军 张荣 《青岛科技大学学报(自然科学版)》 CAS 2017年第2期100-106,111,共8页
针对滚动轴承故障诊断中多尺度样本熵特征向量维数高及其维度难以确定问题,提出了一种基于多尺度样本熵的主成分分析的模糊聚类故障识别模型。该模型首先使用多尺度样本熵方法提取滚动轴承正常、内圈故障、外圈故障、滚动体故障的振动... 针对滚动轴承故障诊断中多尺度样本熵特征向量维数高及其维度难以确定问题,提出了一种基于多尺度样本熵的主成分分析的模糊聚类故障识别模型。该模型首先使用多尺度样本熵方法提取滚动轴承正常、内圈故障、外圈故障、滚动体故障的振动信号特征。其次对多尺度样本熵特征向量使用主成分分析方法进行降维。然后通过累积贡献率来确定其特征向量的维度,并利用选定的特征向量属性作为模糊C均值聚类模型的输入并进行故障识别。最后通过分类系数和分类熵这两个聚类评价指标进行聚类效果的检验。实验结果表明该模型能较好的区分滚动轴承的正常与内圈故障、外圈故障、滚动体故障这4种信号。 展开更多
关键词 多尺度样本 主成分分析 模糊C均值 滚动轴承 故障诊断
下载PDF
基于多尺度排列熵的波纹管压浆超声检测 被引量:1
16
作者 郑豪 韩庆邦 +2 位作者 许洲琛 彭浩 王鹏 《声学技术》 CSCD 北大核心 2016年第6期531-536,共6页
将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真... 将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真结果表明,波纹管压浆质量越差,回波信号对应的排列熵偏均值越小。实际模型的处理结果表明该指标能够有效地判断波纹管压浆质量。 展开更多
关键词 多尺度排列 均值 波纹管
下载PDF
电机轴承故障的多尺度排列熵特征提取与GK识别 被引量:6
17
作者 周永强 卜文绍 《组合机床与自动化加工技术》 北大核心 2021年第4期70-74,共5页
为了有效提取电机轴承故障特征并准确识别出故障类型,提出了复合多尺度排列熵偏均值的特征参数提取和GK聚类的模式识别方法。在故障特征提取方面,使用自适应局部迭代滤波对振动信号进行分解,选择与原振动信号相关性较大的前3个分量,计... 为了有效提取电机轴承故障特征并准确识别出故障类型,提出了复合多尺度排列熵偏均值的特征参数提取和GK聚类的模式识别方法。在故障特征提取方面,使用自适应局部迭代滤波对振动信号进行分解,选择与原振动信号相关性较大的前3个分量,计算分量信号的复合多尺度排列熵偏均值作为特征参数,则每个振动信号得到了一个三维特征向量;在模式识别方面,使用GK算法对特征参数进行聚类。使用美国某大学的电机轴承数据进行效果验证,与基于EMD分解的特征参数比,ALIF分解所得特征的聚类效果更好,类与类之间区分明显,不存在交叉混叠现象,且样本围绕类心的分布更加紧凑。实验结果证明了故障特征提取方法和故障模式识别方法的有效性。 展开更多
关键词 轴承故障诊断 多尺度排列 均值
下载PDF
基于短时滑移模糊熵和LPP的轴承故障诊断 被引量:6
18
作者 童水光 张依东 +1 位作者 徐剑 从飞云 《振动.测试与诊断》 EI CSCD 北大核心 2018年第4期810-815,共6页
针对旋转机械设备的故障特征微弱和环境噪声强等问题,提出了一种基于短时滑移模糊熵和局部保留投影法(locality preserving projection,简称LPP)的故障特征提取方法。首先,通过对滑移截断短时序列的架构分析,引入多尺度复合模糊熵,获得... 针对旋转机械设备的故障特征微弱和环境噪声强等问题,提出了一种基于短时滑移模糊熵和局部保留投影法(locality preserving projection,简称LPP)的故障特征提取方法。首先,通过对滑移截断短时序列的架构分析,引入多尺度复合模糊熵,获得信号在不同复合尺度下的特征信息和故障潜在特征,能准确反应信号复杂度和不确定性;其次,应用LPP流形降维并保留信号的局部数据特征,设计最优带通滤波器,对轴承振动信号进行故障冲击特征提取。仿真分析和实验数据结果验证了该方法在强背景噪声情况下降噪抑制方面的有效性,具有快速识别和提取滚动轴承的微弱冲击特征的能力。 展开更多
关键词 故障诊断 特征提取 滑移截断短时序列 多尺度复合模糊 局部保留投影法
下载PDF
机械振动信号自适应多尺度非线性动力学特征提取方法研究 被引量:12
19
作者 刘敏 范红波 +2 位作者 张英堂 李志宁 杨望灿 《振动与冲击》 EI CSCD 北大核心 2020年第14期224-232,250,共10页
针对机械振动信号的故障特征提取问题,提出了基于独立变分模态分解与多尺度非线性动力学参数的特征提取方法。①提出频谱循环相干系数选取匹配波形对机械振动信号进行端点延拓后再进行VMD分解得到不同频率尺度的IMF分量;②根据互相关准... 针对机械振动信号的故障特征提取问题,提出了基于独立变分模态分解与多尺度非线性动力学参数的特征提取方法。①提出频谱循环相干系数选取匹配波形对机械振动信号进行端点延拓后再进行VMD分解得到不同频率尺度的IMF分量;②根据互相关准则选取有效的IMF分量进行核独立成分分析,分离出相互独立的有效故障特征频带分量;③计算各独立分量的复合多尺度模糊熵偏均值,并利用正交变换将独立分量正交化后构造多维超体,进而利用多维超体体积定义并计算信号的双测度分形维数,从而获得多尺度非线性动力学特征参数,实现机械故障诊断。仿真和实验结果表明:所提方法可有效抑制VMD分解的端点效应和模态混叠,信号分解效果好,特征参数分类精度高,极大地提高了机械故障诊断准确率。 展开更多
关键词 频谱循环相干系数 端点延拓 独立变分模态分解 复合多尺度模糊熵偏均值 双测度分形维数
下载PDF
基于LMD和MSEE的滚动轴承复合故障特征提取方法 被引量:5
20
作者 王普 李天垚 +1 位作者 高学金 高慧慧 《轴承》 北大核心 2019年第3期63-69,共7页
针对滚动轴承复合故障特征相近、不易区分的问题,提出了一种基于局域均值分解和多尺度熵能量的滚动轴承复合故障特征提取方法。首先,将信号进行LMD处理,得到一系列PF分量;然后,通过相关系数选择合适的PF分量计算能量并获得新的时间序列... 针对滚动轴承复合故障特征相近、不易区分的问题,提出了一种基于局域均值分解和多尺度熵能量的滚动轴承复合故障特征提取方法。首先,将信号进行LMD处理,得到一系列PF分量;然后,通过相关系数选择合适的PF分量计算能量并获得新的时间序列;最后,计算新时间序列的多尺度熵,与能量结合构建MSEE进行故障特征提取。机械故障模拟试验台的结果表明:该方法不仅降低了噪声干扰,而且提升了特征提取的精度,可以定量表征滚动轴承复合故障信号的特征,在滚动轴承复合故障信号中有良好的特征提取效果,与单独使用MSE和能量的特征提取方法相比,故障诊断率分别提升了8. 33%和11. 29%。 展开更多
关键词 滚动轴承 振动信号 复合故障 局域均值分解 多尺度能量
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部