期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估
1
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布熵 累积欧氏距离矩阵测度
下载PDF
精细复合多尺度波动散布熵在液压泵故障诊断中的应用 被引量:18
2
作者 姜万录 赵亚鹏 +1 位作者 张淑清 李满 《振动与冲击》 EI CSCD 北大核心 2022年第8期7-16,共10页
液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复... 液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复合多尺度波动散布熵(refined composite multiscale fluctuation dispersion entropy,RCMFDE)引入到液压泵的故障特征提取中,提出了一种基于RCMFDE和粒子群优化支持向量机结合的液压泵故障诊断方法。计算不同故障振动信号的RCMFDE,并选取合适尺度下的多个RCMFDE值作为特征向量形成特征样本,输入粒子群优化支持向量机中进行故障分类识别。通过仿真信号和液压泵故障实测信号进行分析,并将所提出的方法与基于多尺度样本熵(multiscale sample entropy,MSE)、多尺度排列熵(multiscale permutation entropy,MPE)、多尺度符号动态熵(multiscale symbolic dynamic entropy,MSDE)、多尺度散布熵(multiscale dispersion entropy,MDE)、精细复合多尺度散布熵(refined composite multiscale dispersion entropy,RCMDE)、多尺度波动散布熵(multiscale fluctuation dispersion entropy,MFDE)的故障特征提取方法进行对比。试验结果表明,该方法能够更加准确地识别多类液压泵故障并能对液压泵性能退化程度进行有效评估。 展开更多
关键词 波动散布 精细复合多尺度波动散布熵(RCMFDE) 粒子群优化支持向量机 故障诊断 液压泵
下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:1
3
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布 核极限学习机 算术优化算法 水电机组 故障诊断
下载PDF
精细广义复合多元多尺度反向散布熵及其在滚动轴承故障诊断中的应用 被引量:7
4
作者 郑近德 陈焱 +1 位作者 童靳于 潘海洋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第11期1315-1325,共11页
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道... 多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。 展开更多
关键词 精细广义复合多多尺度反向散布 滚动轴承 故障诊断 特征提取
下载PDF
基于精细复合多尺度散布熵与XGBoost的海面小目标检测方法 被引量:2
5
作者 王海峰 行鸿彦 +2 位作者 陈梦 赵迪 李瑾 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期12-20,共9页
针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XG... 针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XGBoost网络进行特征分类,通过模型训练,实现海面小目标检测。利用IPIX雷达实测数据库,在#54、#311、#320海情HV极化方式下检测率分别达到了93.33%、92.38%、95%,相较于图连通密度检测法平均提升12%,证明了RCMDE-XGBoost检测方法有效。 展开更多
关键词 精细复合多尺度散布 XGBoost 微弱信号检测 海杂波
下载PDF
基于变分模态分解和精细复合多尺度均值散布熵的轴承故障诊断 被引量:7
6
作者 张婕 张梅 陈万利 《机电工程》 CAS 北大核心 2023年第5期682-690,共9页
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通... 为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。 展开更多
关键词 轴承故障诊断 变分模态分解 精细复合多尺度均值散布 鲸鱼算法 支持向量机 超参数寻优
下载PDF
基于改进精细复合多尺度归一化散布熵的生物组织变性识别
7
作者 刘备 蔡剑华 +1 位作者 杨江河 彭梓齐 《传感技术学报》 CAS CSCD 北大核心 2023年第11期1761-1767,共7页
在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性... 在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性特征。为了解决上述问题,提出了基于改进精细复合多尺度归一化散布熵(IRCMNDE)的生物组织变性识别方法。引入RCMDE,将其传统粗粒化过程中的平均值计算替换为最大值计算以解决MDE传统粗粒化过程中的问题,突出信号变性特征。通过对熵值的归一化处理减弱不同参数选择导致的熵值波动,形成IRCMNDE方法。将所提方法应用于实测HIFU回波信号数据,并采用概率神经网络(PNN)进行识别。研究结果表明:相较于MPE、MDE和RCMDE方法,基于IRCMNDE的生物组织变性识别率更高,高达96.77%,能更好地区分未变性与变性生物组织。 展开更多
关键词 HIFU 改进精细复合多尺度归一化散布 生物组织 变性识别
下载PDF
基于精细复合多尺度散布熵的墙体内管道敲击探测方法
8
作者 李瑾 行鸿彦 +2 位作者 王海峰 吴叶丽 陈梦 《电子测量技术》 北大核心 2023年第2期25-30,共6页
为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过... 为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过模型训练,完成墙内埋设管道有无的分类,提出了基于精细复合多尺度散布熵的墙体内管道敲击探测方法。将此方法与其它信号处理方法进行对比分析,结果证明,本文所提方法探测准确率高达97%,远远高于其他两种方法。 展开更多
关键词 管道探测 SSA-SVM 敲击声音 精细复合多尺度散布
下载PDF
基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断 被引量:16
9
作者 何玉灵 孙凯 +2 位作者 王涛 王晓龙 唐贵基 《电力自动化设备》 EI CSCD 北大核心 2021年第3期164-172,共9页
针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量... 针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量进行信号的重构,应用精细复合多尺度散布熵来进行重构信号的分类及故障识别。对3对极发电机匝间短路故障前、后定子振动数据的处理效果表明,所提方法可以对发电机匝间短路故障进行有效识别与诊断,与其他多尺度熵方法相比具有一定优越性。 展开更多
关键词 多对极发电机 匝间短路故障 振动信号 变分模态分解 精细复合多尺度散布 故障诊断
下载PDF
基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究 被引量:12
10
作者 王宏伟 孙文磊 +1 位作者 张小栋 何丽 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期288-295,共8页
以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。... 以风力发电机齿轮箱加速度信号为研究对象,提出一种数据驱动的风力发电机齿轮箱故障诊断方法,该方法以灰狼优化的变分模态分解方法(AGWO-VMD)、复合多尺度规范化散布熵(NCMDE)及长短期记忆网络(LSTM)为基础,实现齿轮箱故障的快速诊断。首先将时域信号转换至角域;然后通过AGWO-VMD方法对角域信号进行自适应分解,并采用NCMDE算法提取分解后及原始信号中的故障特征构成特征向量;最后利用LSTM模型对特征向量进行智能识别与分类。对实际采集的6种故障齿轮信号进行测试与验证,试验结果表明该方法能快速有效区分齿轮故障类型。 展开更多
关键词 风力机 齿轮箱 故障检测 灰狼优化算法 变分模态分解 复合多尺度规范化散布 长短期记忆网络
下载PDF
复合多尺度散布熵在滚动轴承故障诊断中的应用 被引量:12
11
作者 郑近德 李从志 潘海洋 《噪声与振动控制》 CSCD 2018年第A02期653-656,共4页
为了提取滚动轴承的非线性故障特征,将复合多尺度散布熵应用于滚动轴承故障特征提取,提出1种基于复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法,并将所提方法应用于滚动轴承实验数据分析。通过与多尺度散布熵和多尺度熵进行对比... 为了提取滚动轴承的非线性故障特征,将复合多尺度散布熵应用于滚动轴承故障特征提取,提出1种基于复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法,并将所提方法应用于滚动轴承实验数据分析。通过与多尺度散布熵和多尺度熵进行对比,结果表明:论文提出的故障诊断方法不仅能够准确地诊断滚动轴承的故障类型和程度,而且识别率优于所对比的方法。 展开更多
关键词 振动与波 多尺度 复合多尺度散布 滚动轴承 故障诊断
下载PDF
基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法 被引量:64
12
作者 李从志 郑近德 +1 位作者 潘海洋 刘庆运 《中国机械工程》 EI CAS CSCD 北大核心 2019年第14期1713-1719,1726,共8页
为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新... 为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新方法.通过滚动轴承实验数据分析,将所提方法与基于多尺度样本熵和多尺度散布熵的故障诊断方法进行了对比,结果表明:所提方法不仅能精确地识别滚动轴承故障类型和故障程度,而且故障识别率高于另两种方法. 展开更多
关键词 散布 多尺度样本 精细复合多尺度散布 滚动轴承 故障诊断
下载PDF
复合多尺度反向散布熵在轴承故障诊断中的应用 被引量:3
13
作者 陈焱 郑近德 +1 位作者 潘海洋 童靳于 《振动与冲击》 EI CSCD 北大核心 2022年第19期55-63,共9页
滚动轴承发生故障时,其振动信号往往表现出非线性和非平稳特征。反向散布熵(reverse dispersion entropy,RDE)能够有效衡量振动信号的复杂性变化和非线性动力学突变行为,但是单一尺度的RDE值并不能完全反映振动信号的复杂性和非线性特... 滚动轴承发生故障时,其振动信号往往表现出非线性和非平稳特征。反向散布熵(reverse dispersion entropy,RDE)能够有效衡量振动信号的复杂性变化和非线性动力学突变行为,但是单一尺度的RDE值并不能完全反映振动信号的复杂性和非线性特征。对此,受多尺度熵启发,同时针对传统多尺度粗粒化方式的不足,提出了复合多尺度反向散布熵(composite multi-scale reverse dispersion entropy,CMRDE)。通过仿真信号分析,将CMRDE与多尺度反向散布熵(multi-scale reverse dispersion entropy,MRDE)和RDE进行对比,结果表明:CMRDE不仅能反映不同尺度下信号复杂度的差异,且变化更平缓、波动更小。在此基础上,将CMRDE应用于滚动轴承故障特征提取,提出了一种基于CMRDE、集合经验模态分解和布谷鸟搜索算法优化支持向量机的滚动轴承故障诊断方法。将所提方法应用于滚动轴承试验数据分析,并通过与现有方法进行对比,结果表明:相较所对比的方法,所提方法能有效识别轴承故障类型,提取的故障特征误差更小、故障识别率更高。 展开更多
关键词 反向散布 复合多尺度反向散布 滚动轴承 故障诊断
下载PDF
基于多迭代变分模态分解与复合多尺度散布熵的生物组织变性识别方法 被引量:8
14
作者 胡伟鹏 邹孝 +2 位作者 刘备 赵新民 钱盛友 《传感技术学报》 CAS CSCD 北大核心 2019年第12期1856-1863,共8页
根据高强度聚焦超声(HIFU)实验中采集到的超声背散射信号的特点,采用多迭代变分模态分解(MIVMD)与复合多尺度散布熵(CMDE)对生物组织变性进行识别。首先对采集的超声背散射回波信号进行MIVMD重构,计算重构后有用信号的CMDE;并使用Gustaf... 根据高强度聚焦超声(HIFU)实验中采集到的超声背散射信号的特点,采用多迭代变分模态分解(MIVMD)与复合多尺度散布熵(CMDE)对生物组织变性进行识别。首先对采集的超声背散射回波信号进行MIVMD重构,计算重构后有用信号的CMDE;并使用Gustafson-Kessel(GK)模糊聚类得到聚类中心,根据欧式贴近度与择近原则对生物组织变性进行识别。通过对仿真信号分析发现,MIVMD重构获得信号的信噪比高于经验模态分解(EMD)与变分模态分解(VMD)重构获得的信号,MIVMD重构获得信号的均方根误差低于EMD与VMD重构获得的信号。将其应用于HIFU治疗中实际获取的超声背散射信号,计算MIVMD重构后信号的复合多尺度散布熵(CMDE),并与近似熵(ApEn)、样本熵(SE)、模糊熵(FE)比较发现,CMDE更容易区分变性组织与未变性组织。与MIVMD-ApEn-GK聚类、VMD-SE-GK聚类和MIVMD-FE-GK聚类相比,本文所提MIVMD-CMDE-GK聚类的效果更好,识别率为91.32%。 展开更多
关键词 超声背散射回波 组织损伤 多迭代变分模态分解 复合多尺度散布
下载PDF
基于精细复合多尺度散布熵的高压断路器机械故障诊断方法 被引量:5
15
作者 陈佳豪 吴浩 +2 位作者 李栋 杨杰 刘益岑 《四川轻化工大学学报(自然科学版)》 CAS 2021年第4期40-47,共8页
针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据... 针对高压断路器机械故障识别准确率不高的问题,提出了一种基于精细复合多尺度散布熵(RCMDE)的断路器故障诊断方法。利用实验室10 kV户内真空高压断路器进行合闸动作时正常、螺丝松动、传动机构卡涩、合闸弹簧储能不足4种状态的振动数据采集。对采集到的数据计算RCMDE值,并构成特征向量集,将特征向量集分作训练集及测试集。利用粒子群算法(PSO)优化后的极限学习机(ELM)训练训练集得到智能故障识别模型,将测试集输入模型进行测试,实现断路器机械故障诊断。结果表明,基于RCMDE-PSO-ELM的高压断路器机械故障诊断方法能有效识别不同状态的机械故障,并且在噪声干扰以及数据丢失下仍能对故障进行准确识别,具有很好的抗干扰能力,在背景干扰较强的高压断路器故障检测环境下具备一定的实用性。 展开更多
关键词 高压断路器 机械故障诊断 振动信号 精细复合多尺度散布 粒子群算法 极限学习机
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
16
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
17
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于CMMFDE与多传感器信息融合的旋转机械故障诊断研究
18
作者 程志平 王潞红 +1 位作者 欧斌 吴军良 《机电工程》 CAS 北大核心 2024年第5期807-816,共10页
采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)... 采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)的旋转机械故障诊断方法。首先,引入复合多元粗粒化处理,提出了CMMFDE方法,避免了传统单变量分析方法只能处理单一通道振动信号而导致特征的表征性能不足的缺陷,增强了故障特征的表征性能;随后,利用布置在旋转机械不同部位的传感器收集了多种类型的信号,组成混合多通道信号,并进行了CMMFDE分析,构建了故障特征;最后,采用HHO对极限学习机的参数进行了自适应优化,并对特征样本进行了训练和测试,完成了旋转机械的故障识别工作;利用齿轮箱、离心泵两种典型的旋转机械数据集进行了实验分析。研究结果表明:该方法对多个通道的信号进行分析时,所获得的准确率达到了100%和98%,优于对单个通道信号进行分析时获得的准确率,同时CMMFDE方法的准确率和特征提取时间均优于精细复合多元多尺度熵(RCMMSE)、精细复合多元多尺度模糊熵(RCMMFE)、精细复合多元多尺度排列熵(RCMMPE)、多元多尺度波动散布熵(MMFDE)。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 离心泵 复合多多尺度波动散布 哈里斯鹰优化极限学习机
下载PDF
基于IMF-MFDE和GRU的水电机组故障诊断
19
作者 朱文鑫 王淑青 《水电能源科学》 北大核心 2024年第4期173-177,共5页
针对水电机组振动信号非平稳、非线性及强噪声的特点,提出了一种IMF多尺度波动散布熵(MFDE)结合门控循环单元(GRU)的故障诊断方法。首先,采用跳蛛优化算法(JSOA)寻找变分模态分解(VMD)最优参数,达到振动信号最佳分解降噪效果;其次,对分... 针对水电机组振动信号非平稳、非线性及强噪声的特点,提出了一种IMF多尺度波动散布熵(MFDE)结合门控循环单元(GRU)的故障诊断方法。首先,采用跳蛛优化算法(JSOA)寻找变分模态分解(VMD)最优参数,达到振动信号最佳分解降噪效果;其次,对分解得到的本征模态函数(IMF)进行重构,计算有效IMF的多尺度波动散布熵(MFDE)作为故障特征向量;最后,将特征向量输入GRU构建水电机组故障识别器。所提方法对实际水电站机组故障样本数据的故障识别率达97.83%,验证了该方法的有效性。 展开更多
关键词 水电机组振动信号 故障诊断 跳蛛优化算法 变分模态分解 多尺度波动散布
下载PDF
基于广义精细复合多尺度散布熵的机车轮对轴承智能诊断方法 被引量:2
20
作者 陆毅 《机械设计与研究》 CSCD 北大核心 2022年第4期119-124,137,共7页
针对机车轮对轴承单一与复合故障在内的不同健康状况的识别问题,引入一种基于精细复合多尺度散布熵改进的非线性动力学分析方法—广义精细复合多尺度散布熵。该方法解决了熵值波动大、计算不准确的问题,在计算过程中能获取更多有效信息... 针对机车轮对轴承单一与复合故障在内的不同健康状况的识别问题,引入一种基于精细复合多尺度散布熵改进的非线性动力学分析方法—广义精细复合多尺度散布熵。该方法解决了熵值波动大、计算不准确的问题,在计算过程中能获取更多有效信息。将之与灰狼算法优化的支持向量机结合,提出了一种机车轮对轴承智能诊断方法。为验证其效果,本文采用南昌铁路局实际机车轮对轴承数据进行实验,得到结论:所提方法识别准确率明显高于多尺度散布熵与精细复合多尺度散布熵的方法,而且能精确地识别复合故障以及不同程度故障,具有较大实际意义。 展开更多
关键词 轮对轴承 广义精细复合多尺度散布 灰狼算法 支持向量机 故障诊断
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部