An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the...An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the nu-merical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.展开更多
In recent decades, magnetoelectric effect in multiferroic materials has attracted extensive attention owing to the upcoming demands for new-generation multi-functional magnetoelectronic devices, such as transducer, se...In recent decades, magnetoelectric effect in multiferroic materials has attracted extensive attention owing to the upcoming demands for new-generation multi-functional magnetoelectronic devices, such as transducer, sensor and so on. This gives people a strong push to explore the multiferroic materials with a reduced dimension and effective coupling between electric and magnetic orderings, especially at room temperature. Due to the weak magnetoelectric coupling strength in sing-phase multiferroic materials, scientists start to design nanocomposites and artificial nanostructures with strong coupling among order parameters(lattice, charge, spin and orbital). In this review, we will introduce recent major progresses of magnetoelectric coupling in multiferroic nanocomposites across their interfaces from the following four aspects: strain effect, charge transfer, magnetic exchange interaction and orbital hybridization, based on their coupling mechanisms. Through a full understanding of the above coupling among these orderings, it is possible to achieve the nanoscale modulation of magnetization(ferroelectric polarization) by external electric(magnetic) field. Apart from the magnetoelectric coupling, those artificially functional nanocomposites provide us a platform to explore and study the emerging physical phenomena so that we can design self-assembled nanostructures to tailor novel functionalities in future applications.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10872179 and 10725210)the Zhejiang Provincial Natural Science Foundation of China (No. Y7080298)the Zijin Plan of Zhejiang University, China
文摘An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the nu-merical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.
基金supported by the National Natural Science Foundation of China (51322207 and 51332001)Beijing Natural Science Foundation (2132023)the Fundamental Research Funds for the Central Universities (2012LYB07)
文摘In recent decades, magnetoelectric effect in multiferroic materials has attracted extensive attention owing to the upcoming demands for new-generation multi-functional magnetoelectronic devices, such as transducer, sensor and so on. This gives people a strong push to explore the multiferroic materials with a reduced dimension and effective coupling between electric and magnetic orderings, especially at room temperature. Due to the weak magnetoelectric coupling strength in sing-phase multiferroic materials, scientists start to design nanocomposites and artificial nanostructures with strong coupling among order parameters(lattice, charge, spin and orbital). In this review, we will introduce recent major progresses of magnetoelectric coupling in multiferroic nanocomposites across their interfaces from the following four aspects: strain effect, charge transfer, magnetic exchange interaction and orbital hybridization, based on their coupling mechanisms. Through a full understanding of the above coupling among these orderings, it is possible to achieve the nanoscale modulation of magnetization(ferroelectric polarization) by external electric(magnetic) field. Apart from the magnetoelectric coupling, those artificially functional nanocomposites provide us a platform to explore and study the emerging physical phenomena so that we can design self-assembled nanostructures to tailor novel functionalities in future applications.