To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme...To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.展开更多
To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method....To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC-MoSi2/ZrO2-MoSi2 coating is dense and crack-free with a thickness of 250-300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.展开更多
Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f...The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.展开更多
Ni-TiN nanocomposite films were produced from a Ni plating bath containing TiN nanoparticles by using dc electroplating method. The structure and surface morphology of Ni-TiN composite coatings were analyzed by atom f...Ni-TiN nanocomposite films were produced from a Ni plating bath containing TiN nanoparticles by using dc electroplating method. The structure and surface morphology of Ni-TiN composite coatings were analyzed by atom force microscope, X-ray diffraction, and trans- mission electron microscopy. Meanwhile, the anti-corrosion properties, hardness and ther- mostability of Ni-TiN nanocomposite films were also investigated and compared with the traditional polycrystalline Ni coatings. The results show that, compared with the traditional polycrystalline Ni film, Ni-TiN nanocomposite coatings display much better corrosion resistance, higher film hardness, and thermal stability. In addition, the hardness of Ni-TiN nanocomposite coatings decreases slightly with the increase of electroplating current density, which may be due to the synergism of hydrogen evolution and faster nucleation/growth rate of nickel crystallites.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and micro...The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and microstructures of the composites were investigated. The results showed that the elastic modulus of the as-cast composites increased straightly with increasing ZnO coating content. The ultimate tensile strength and yield strength of the as-cast composites rapidly increased initially and then declined with increasing ZnO coating content. However, the elongations of all the as-cast composites had similar values. The elongations of the composites were highly enhanced and the ultimate tensile strength of the composite without ZnO coating was the largest after extrusion. A number of whiskers in the composites with ZnO coating were fractured during the extrusion process, but the whiskers' breakage extent was limited with the increase of coating content.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Cr-A1-Si-N coatings were deposited on SUS 304 substrate by a hybrid coating system. A Cr interlayer was introduced between Cr-A1-Si-N coating and SUS 304 substrate to improve the coating adherence. The effects of Cr i...Cr-A1-Si-N coatings were deposited on SUS 304 substrate by a hybrid coating system. A Cr interlayer was introduced between Cr-A1-Si-N coating and SUS 304 substrate to improve the coating adherence. The effects of Cr interlayer on the microhardness, adhesion, and tribological behavior of Cr-A1-Si-N coatings were systematically investigated. The results indicate that the microhardness of the Cr-A1-Si-N coatings gradually deceases with increasing thickness of Cr interlayers. The adhesion between Cr-A1-Si-N and SUS 304 substrate is improved by addition of the Cr interlayers. A peak critical load of-50 N is observed for the coating containing Cr interlayer of 60 nm as compared - 20 N for the coating without Cr interlayer. The thicker Cr interlayers result in reduced critical load values. Moreover, the wear resistance of the Cr-AI-Si-N coatings is greatly enhanced by introducing the Cr interlayer with thickness of 60 nm in spite of the decreased microhardness. The friction coefficient of the coating system is also moderately reduced.展开更多
In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the ...In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.展开更多
Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency...Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.展开更多
To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.Th...To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.The wear and corrosion behaviours of the coatings were investigated.The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature.The corrosion resistance of the coatings was tested in 3.5%(mass fraction) NaCl solution.The coatings exhibit excellent wear resistance due to the recombined action of amorphous phase and different intermetallic compounds.The main wear mechanisms of the coatings and the AZ91D sample are different.The former is abrasive wear and the latter is adhesive wear.The coatings compared with AZ91D magnesium alloy also exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.展开更多
In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under st...In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.展开更多
The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures ...The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.展开更多
Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) comp...Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) composite photocatalysts were synthesized. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy, and BET surface area analyzer. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. For maximizing the photodegradation activity of the composite photocatalysts, the optimal CNIC content was determined. The improved photocatalytic activity of the as-prepared Cr-doped Sr Ti O3–CNIC composite photocatalyst may be attributed to the enhancement of photo-generated electron–hole separations at the interface.展开更多
In order to improve the properties of HDPE, the authors used the method of suspended diffusion for purification the pelagic clay, used silane coupling agent to increase its organic activation, and prepared the composi...In order to improve the properties of HDPE, the authors used the method of suspended diffusion for purification the pelagic clay, used silane coupling agent to increase its organic activation, and prepared the composites of organic pelagic clay/HDPE by inching them in different conditions. The affections of process conditions and quantity of pelagic clay to the properties of composites were analyzed by testing their mechanical properties, thermo stability and barrier properties. According to test the structure of composites, it is indicated that pelagic clay has good compatibility with HDPE. The result shows that the pelagic clay can improve mechanical properties, thermo stability and barrier properties of HDPE properties effectively.展开更多
基金Projects(51221001,50972120)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing of Northwestern Polytechnical University,ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.
基金Projects(51221001,51222207)supported by the National Natural Science Foundation of ChinaProject(090677)supported by the Program for New Century Excellent Talents in University of ChinaProject(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘To improve the oxidation resistance of carbon/carbon (C/C) composites in air at high temperatures, a SiC- MoSi2/ZrO2-MoSi2 coating was prepared on the surface of C/C composites by pack cementation and slurry method. The microstructures and phase compositions of the coated C/C composites were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The result shows that the SiC-MoSi2/ZrO2-MoSi2 coating is dense and crack-free with a thickness of 250-300 μm. The preparation and the high temperature oxidation property of the coated composites were investigated. The as-received coating has excellent oxidation protection ability and can protect C/C composites from oxidation for 260 h at 1773 K in air. The excellent anti-oxidation performance of the coating is considered to come from the formation of ZrSiO4, which improves the stability of the coating at high temperatures.
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
基金Project(50871065) supported by the National Natural Science Foundation of ChinaProjects(08DJ1400402,09JC1407200,10DZ2290904) supported by the Science and Technology Committee of Shanghai Municipality,China
文摘The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys.
文摘Ni-TiN nanocomposite films were produced from a Ni plating bath containing TiN nanoparticles by using dc electroplating method. The structure and surface morphology of Ni-TiN composite coatings were analyzed by atom force microscope, X-ray diffraction, and trans- mission electron microscopy. Meanwhile, the anti-corrosion properties, hardness and ther- mostability of Ni-TiN nanocomposite films were also investigated and compared with the traditional polycrystalline Ni coatings. The results show that, compared with the traditional polycrystalline Ni film, Ni-TiN nanocomposite coatings display much better corrosion resistance, higher film hardness, and thermal stability. In addition, the hardness of Ni-TiN nanocomposite coatings decreases slightly with the increase of electroplating current density, which may be due to the synergism of hydrogen evolution and faster nucleation/growth rate of nickel crystallites.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The 6061 aluminum matrix composites reinforced with ZnO-coated Mg_2B_2O_5w were fabricated by squeeze casting method and followed by extruded under a technical equivalent condition. The mechanical properties and microstructures of the composites were investigated. The results showed that the elastic modulus of the as-cast composites increased straightly with increasing ZnO coating content. The ultimate tensile strength and yield strength of the as-cast composites rapidly increased initially and then declined with increasing ZnO coating content. However, the elongations of all the as-cast composites had similar values. The elongations of the composites were highly enhanced and the ultimate tensile strength of the composite without ZnO coating was the largest after extrusion. A number of whiskers in the composites with ZnO coating were fractured during the extrusion process, but the whiskers' breakage extent was limited with the increase of coating content.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金supported by a grant from the National Core Research Center (NCRC) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2010-0001-226)a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea
文摘Cr-A1-Si-N coatings were deposited on SUS 304 substrate by a hybrid coating system. A Cr interlayer was introduced between Cr-A1-Si-N coating and SUS 304 substrate to improve the coating adherence. The effects of Cr interlayer on the microhardness, adhesion, and tribological behavior of Cr-A1-Si-N coatings were systematically investigated. The results indicate that the microhardness of the Cr-A1-Si-N coatings gradually deceases with increasing thickness of Cr interlayers. The adhesion between Cr-A1-Si-N and SUS 304 substrate is improved by addition of the Cr interlayers. A peak critical load of-50 N is observed for the coating containing Cr interlayer of 60 nm as compared - 20 N for the coating without Cr interlayer. The thicker Cr interlayers result in reduced critical load values. Moreover, the wear resistance of the Cr-AI-Si-N coatings is greatly enhanced by introducing the Cr interlayer with thickness of 60 nm in spite of the decreased microhardness. The friction coefficient of the coating system is also moderately reduced.
基金The authors are grateful for the financial supports from Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1630129).
文摘In order to improve the wettability and bonding performance of the interface between carbon fiber and aluminum matrix,nickel-and copper-coated carbon fiber-reinforced aluminum matrix composites were fabricated by the squeeze melt infiltration technique.The interface wettability,microstructure and mechanical properties of the composites were compared and investigated.Compared with the uncoated fiber-reinforced aluminum matrix composite,the microstructure analysis indicated that the coatings significantly improved the wettability and effectively inhibited the interface reaction between carbon fiber and aluminum matrix during the process.Under the same processing condition,aluminum melt was easy to infiltrate into the copper-coated fiber bundles.Furthermore,the inhibited interface reaction was more conducive to maintain the original strength of fiber and improve the fiber−matrix interface bonding performance.The mechanical properties were evaluated by uniaxial tensile test.The yield strength,ultimate tensile strength and elastic modulus of the copper-coated carbon fiber-reinforced aluminum matrix composite were about 124 MPa,140 MPa and 82 GPa,respectively.In the case of nickel-coated carbon fiber-reinforced aluminum matrix composite,the yield strength,ultimate tensile strength and elastic modulus were about 60 MPa,70 MPa and 79 GPa,respectively.The excellent mechanical properties for copper-coated fiber-reinforced composites are attributed to better compactness of the matrix and better fiber−matrix interface bonding,which favor the load transfer ability from aluminam matrix to carbon fiber under the loading state,giving full play to the bearing role of carbon fiber.
基金UGC, New Delhi, India, for the award of Post-Doctoral Fellowship to K.O.Nayana(Award No: F.15-1/2015-16/PDFWM-2015-17KAR-31527(SA-Ⅱ))
文摘Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.
基金Project(AWPT08-10)supported by the Open Fund of the State Key Laboratory of Advanced Welding Production Technology in Harbin Institute of Technology,ChinaProject(mmlab0706)supported by the Open Fund of the State Key Laboratory of Materials Modification by Laser,Ion and Electron Beams in Dalian University of University,ChinaProject(0710908-05-K)supported by the Research Funds of the Guangxi Key Laboratory of Information Materials in Guilin University of Electronic Technology,China
文摘To improve the wear and corrosion properties of AZ91D magnesium alloys,Cu-based amorphous composite coatings were fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Cu47Ti34Zr11Ni8 and SiC.The wear and corrosion behaviours of the coatings were investigated.The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature.The corrosion resistance of the coatings was tested in 3.5%(mass fraction) NaCl solution.The coatings exhibit excellent wear resistance due to the recombined action of amorphous phase and different intermetallic compounds.The main wear mechanisms of the coatings and the AZ91D sample are different.The former is abrasive wear and the latter is adhesive wear.The coatings compared with AZ91D magnesium alloy also exhibit good corrosion resistance because of the presence of the amorphous phase in the coatings.
基金Project(51175424)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by‘111’Program of ChinaProject(JC20110257)supported by the Basic Research Foundation of Northwestern Polytechnical University,China
文摘In order to investigate the effects of different geometrical parameters and pretightening loads on failure mode and bearing strength,a large number of single-bolted T300/QY8911 composite laminates were tested under static tension load.Box-plot was used to extract the singular testing values of bearing strength and effective statistical values were obtained.T-test method of independent samples was used to study how much pretightening loads influence bearing strength.The results show that the geometrical parameters,such as ratios of width to hole diameter(w/d) and edge distance to hole diameter(e/d),remarkably influence failure mode and bearing strength.Net-section failure will occur when w/d is smaller than 4,and shear-out failure will occur when e/d is smaller than 2.Bearing failure or bearing and shear-out combined failure will occur when w/d is greater than 4 and e/d is greater than 2.There is an optimal combination of geometrical parameters to achieve the highest bearing strength.For most of specimens,pretightening loads do not explicitly influence bearing strength.
基金Project(10037273) supported by the Ministry of Knowledge Economy,Korea
文摘The effects of reduction ratio during roll bonding on the microstructural evolution at interface and subsequent mechanical properties of roll-bonded Al/Cu 2-ply sheets were investigated. The interface microstructures for several Al/Cu 2-ply sheets fabricated under different reduction ratios between 30% and 65% were verified by transmission electron microscopy(TEM). Taking the difference of interface microstructure into consideration, 3-point bending and peel tests were performed for obtaining flexural and bonding strengths for Al/Cu 2-ply sheets. The effect of the quantified areas of metallurgical bonding at interfaces on the bonding strength was also discussed. The results show that both the bonding and flexural strengths for Al/Cu 2-ply sheets are reduced by decreasing the reduction ratio during the roll bonding process, which is strongly correlated with the interface microstructure. This was especially verified by observing the interface delamination from the 3-point bent samples.
基金Project(51208102)supported by the National Natural Science Foundation of China
文摘Novel organic-inorganic composite photocatalyst offers new opportunities in the practical applications of photocatalysis. Novel visible light-induced Cr-doped Sr Ti O3–carbon nitride intercalation compound(CNIC) composite photocatalysts were synthesized. The composite photocatalyst was characterized by X-ray diffraction(XRD), field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), Fourier transform infrared(FT-IR) spectroscopy, UV-vis diffuse reflection spectroscopy, photoluminescence(PL) spectroscopy, and BET surface area analyzer. The photocatalytic oxidation ability of the novel composite photocatalyst was evaluated using methyl orange(MO) as a target pollutant. The photocatalysts exhibited a significantly enhanced photocatalytic performance in degrading MO. For maximizing the photodegradation activity of the composite photocatalysts, the optimal CNIC content was determined. The improved photocatalytic activity of the as-prepared Cr-doped Sr Ti O3–CNIC composite photocatalyst may be attributed to the enhancement of photo-generated electron–hole separations at the interface.
文摘In order to improve the properties of HDPE, the authors used the method of suspended diffusion for purification the pelagic clay, used silane coupling agent to increase its organic activation, and prepared the composites of organic pelagic clay/HDPE by inching them in different conditions. The affections of process conditions and quantity of pelagic clay to the properties of composites were analyzed by testing their mechanical properties, thermo stability and barrier properties. According to test the structure of composites, it is indicated that pelagic clay has good compatibility with HDPE. The result shows that the pelagic clay can improve mechanical properties, thermo stability and barrier properties of HDPE properties effectively.