谐振频率及阻抗匹配是压电换能器中十分重要的参数.基于压电陶瓷圆环Pb Zr_(0.48)Ti_(0.52)O_3(PZT)和磁致伸缩材料铽镝铁Tb_(0.3)Dy_(0.7)Fe_(1.92)(TDF)构成"环-环"磁电复合振子,实验研究磁场作用下,由磁电复合振子的有效...谐振频率及阻抗匹配是压电换能器中十分重要的参数.基于压电陶瓷圆环Pb Zr_(0.48)Ti_(0.52)O_3(PZT)和磁致伸缩材料铽镝铁Tb_(0.3)Dy_(0.7)Fe_(1.92)(TDF)构成"环-环"磁电复合振子,实验研究磁场作用下,由磁电复合振子的有效介电常数变化引起的电容型磁阻抗以及磁控谐振频率偏移效应.实验结果显示,谐振频率和反谐振频率下的磁阻抗可达18%、32%;当磁场为800 m T时,谐振及反谐振频率的最大偏移量约为9 k Hz.利用复合材料的磁-力-电耦合效应,对电容型磁阻抗及磁控谐振频率偏移进行了理论分析.本研究为解决压电换能器谐振频率的漂移问题及阻抗匹配提供了实验及理论基础.展开更多
文摘谐振频率及阻抗匹配是压电换能器中十分重要的参数.基于压电陶瓷圆环Pb Zr_(0.48)Ti_(0.52)O_3(PZT)和磁致伸缩材料铽镝铁Tb_(0.3)Dy_(0.7)Fe_(1.92)(TDF)构成"环-环"磁电复合振子,实验研究磁场作用下,由磁电复合振子的有效介电常数变化引起的电容型磁阻抗以及磁控谐振频率偏移效应.实验结果显示,谐振频率和反谐振频率下的磁阻抗可达18%、32%;当磁场为800 m T时,谐振及反谐振频率的最大偏移量约为9 k Hz.利用复合材料的磁-力-电耦合效应,对电容型磁阻抗及磁控谐振频率偏移进行了理论分析.本研究为解决压电换能器谐振频率的漂移问题及阻抗匹配提供了实验及理论基础.