期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
复合支持向量机方法及其在光谱分析中的应用 被引量:12
1
作者 安欣 苏时光 +3 位作者 王韬 徐硕 黄文江 张录达 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第8期1619-1621,共3页
SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证... SVC和SVR是支持向量机研究的两个主要问题。文章把两种建模方法相结合,先由SVC模型判别分类,后由各类的局部SVR模型进行定量分析,提出了复合支持向量机(CSVM)方法。根据71个试验小区的水稻冠层高光谱与叶片含氮量建立定量分析模型,考证了CSVM算法。基于模拟研究的思想,随机划分建模集和预测集,比例为55∶16。经过5次划分试验,复合支持向量机方法建模对叶片含氮量的预测值与凯氏定氮实际值之间的平均相关系数为0.89,平均绝对误差为0.088;而传统的支持向量机方法得到的平均相关系数为0.87,平均绝对误差为0.091。由此可见,复合支持向量机方法相对于传统的支持向量机方法预测精度有所提高。文章研究方法的提出为化学计量学定量分析研究给出了新的思路。 展开更多
关键词 复合支持向量机 高光谱 回归模型 叶片含氮量
下载PDF
基于复合核SVM的智能电表基本误差预测方法 被引量:11
2
作者 王永超 唐求 +2 位作者 马俊 邱伟 杨莹莹 《电子测量与仪器学报》 CSCD 北大核心 2021年第10期209-216,共8页
智能电表作为电网的终端设备,其退化情况与工作环境、运行时间等因素密切相关。针对复杂变量条件下智能电表退化情况难以预测的问题,提出一种基于复合核支持向量机(support vector machine,SVM)的智能电表基本误差预测方法。首先对智能... 智能电表作为电网的终端设备,其退化情况与工作环境、运行时间等因素密切相关。针对复杂变量条件下智能电表退化情况难以预测的问题,提出一种基于复合核支持向量机(support vector machine,SVM)的智能电表基本误差预测方法。首先对智能电表退化数据进行分析,采用皮尔逊相关性分析找出与智能电表基本误差相关性极强的环境变量。然后,为进一步提取数据退化特征,采用模糊C均值聚类算法对智能电表退化数据进行聚类,确定退化特征向量。最后,基于高斯径向基核函数与多项式核函数构造一种新的复合核SVM模型用以预测智能电表基本误差。结合新疆地区智能电表退化数据对复合核SVM模型性能进行验证,实验结果表明,复合核SVM模型可以准确预测复杂环境下智能电表的基本误差,其预测准确率高于贝叶斯方法、神经网络方法以及经典SVM方法。 展开更多
关键词 智能电表 复合支持向量 模糊C均值聚类 基本误差预测
下载PDF
分子量分布的广义状态反馈跟踪控制 被引量:1
3
作者 王晶 黄颖华 +2 位作者 曹柳林 吴海燕 靳其兵 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第2期205-211,共7页
针对化工过程中分子量分布的跟踪控制问题,提出了一种简单的广义状态反馈控制方法,实现给定分子量分布的跟踪.该方法充分利用复合动态支持向量机模型,实现分子量分布函数在时间域和空间域上的分离,从而将分布函数的跟踪问题转化为动态... 针对化工过程中分子量分布的跟踪控制问题,提出了一种简单的广义状态反馈控制方法,实现给定分子量分布的跟踪.该方法充分利用复合动态支持向量机模型,实现分子量分布函数在时间域和空间域上的分离,从而将分布函数的跟踪问题转化为动态权值向量的时间域跟踪问题,并设计了状态反馈与积分器相结合的控制结构,采用线性矩阵不等式技术对闭环系统稳定性和跟踪性能进行分析.仿真结果表明该方法的可行性. 展开更多
关键词 分子量分布 复合动态支持向量模型 广义状态反馈控制 稳定性 跟踪性能
下载PDF
Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings 被引量:4
4
作者 谭业发 何龙 +2 位作者 王小龙 洪翔 王伟刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2566-2573,共8页
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ... TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction. 展开更多
关键词 TiC particles Ni-based alloy composite coating least square support vector machine(LS-SVM) wear prediction model
下载PDF
Application of a compound controller based on fuzzy control and support vector machine to ship's boiler-turbine coordinated control system 被引量:2
5
作者 刘胜 李妍妍 《Journal of Marine Science and Application》 2009年第1期33-39,共7页
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b... Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness. 展开更多
关键词 ship boiler-turbine coordinated system support vector machine inverse control compound control
下载PDF
A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis 被引量:9
6
作者 XU Fan Peter W TSE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2404-2417,共14页
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo... Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE. 展开更多
关键词 refined composite multiscale fuzzy entropy roller bearings support vector machine fault diagnosis particle swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部